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Abstract. Person tracking using computer vision techniques has wide
ranging applications such as autonomous driving, home security and
sports analytics. However, the growing threat of adversarial attacks raises
serious concerns regarding the security and reliability of such techniques.
In this work, we study the impact of multi-task learning (MTL) on
the adversarial robustness of the widely used SiamRPN tracker, in the
context of person tracking. Specifically, we investigate the effect of jointly
learning with semantically analogous tasks of person tracking and human
keypoint detection. We conduct extensive experiments with more powerful
adversarial attacks that can be physically realizable, demonstrating the
practical value of our approach. Our empirical study with simulated as
well as real-world datasets reveals that training with MTL consistently
makes it harder to attack the SiamRPN tracker, compared to typically
training only on the single task of person tracking.
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1 Introduction

Person tracking is extensively used in various real-world use cases such as au-
tonomous driving [3,50,53], intelligent video surveillance [4,54,1] and sports
analytics [5,22,29]. However, vulnerabilities in the underlying techniques revealed
by a growing body of adversarial ML research [42,14,35,6,11,46,20,49,7] seriously
calls into question the trustworthiness of these techniques in critical use cases.
While several methods have been proposed to mitigate threats from adversarial
attacks in general [8,35,43,39,41], defense research in the tracking domain remains
sparse [18]. This is especially true for the new generation of physically realizable
attacks [6,11,46] that pose a greater threat to real-world applications.

In this work, we aim to investigate the robustness characteristics of the
SiamRPN tracker [28], which is widely used in the tracking community. Specifi-
cally, our goal is to improve the tracking robustness to a physically realizable
patch attack [46]. Such attacks are unbounded in the perceptual space and can
be deployed in realistic scenarios, making them more harmful than imperceptible
digital perturbation attacks. Figure 1 shows an example of such a physically
realizable patch attack that blends in the background.



Fig. 1. Example of a physically realizable patch attack. The dashed blue box shows the
ground-truth bounding box and the solid red box shows the bounding box predicted by
SiamRPN. In the benign case (left), the tracker is able to correctly track the person
whereas in the adversarial case (right) the tracker is fooled by the adversarial patch.

Multi-task learning (MTL) has recently been touted to improve adversar-
ial robustness to imperceptible digital perturbation attacks for certain computer
vision tasks [36,13]. However, it is unclear if these proposed methods translate to
physically realizable attacks. Moreover, these methods have primarily been stud-
ied in the context of a single backbone branch with one-shot inference, whereas
the Siamese architecture of the SiamRPN tracker involves multiple branched
stages, posing interesting design considerations. In this work, we aim to address
these research gaps by focusing on improving single-person tracking robustness.

As physically realizable attacks are unbounded in the perceptual space, they
can create easily perceptible, but inconspicuous perturbations that fools a deep
neural network into making incorrect predictions. However humans can ignore
such perturbations by processing semantic knowledge of the real world. This
calls for implicitly incorporating some inductive biases that supervise the neural
network to learn semantic constraints that humans so instinctively interpret. To
this effect, in this work we study the impact of MTL on robustness of person
tracking with a semantically analogous task such as human keypoint detection.

Contributions

• First Study of Tracking Robustness with MTL. To the best of our
knowledge, our work is the first to uncover the robustness gains from MTL in
the context of person tracking for physically realizable attacks. Our code is
made available at https://github.com/nilakshdas/SkeleVision.

• Novel MTL Formulation for Tracking. We augment the SiamRPN tracker
for MTL by attaching a keypoint detection head to the template branch of the
shared backbone while jointly training.

• Extensive Evaluation. We conduct extensive experiments to empirically
evaluate the effectiveness of our MTL approach by varying attack parameters,
network architecture, and MTL hyperparameters.

• Discovery. Our experiments with simulated and real-world datasets reveal
that training with MTL consistently makes it harder to attack the SiamRPN
tracker as compared to training only on the single task of person tracking.
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2 Related Work

Since its inception with SiamFC [2], the Siamese architecture has been leveraged
by multiple real-time object trackers including DSiam [15], SiamRPN [28], DaSi-
amRPN [63], SiamRPN++ [27], SiamAttn [55] and SiamMOT [40]. In this work,
we experiment with SiamRPN as the target tracker since many other trackers
share a similar network architecture as SiamRPN, and the properties of SiamRPN
can be generalized to other such state-of-the-art trackers.

2.1 Multi-task Learning

MTL aims to learn multiple related tasks jointly to improve the generalization
performance of all the tasks [61]. It has been applied to various computer vi-
sion tasks including image classification [34], image segmentation [36], depth
estimation [31], and human keypoint detection [21].

MTL has also been introduced for the video object tracking task [25,23,24].
Zhang et al. [56,57,58] formulate the particle filter tracking as a structured MTL
problem, where learning the representation of each particle is treated as as an
individual task. Wang et al. [45] show that joint training of natural language
processing and object tracking can link the local and global search together, and
lead to a better tracking accuracy. Multi-modal RGB-depth and RGB-infrared
tracking also demonstrate that including the depth or infrared information in
the tracking training process can improve the overall performances [51,62,59,60].

2.2 Adversarial Attacks

Machine learning model are easily fooled by adversarial attacks [9]. Adversarial
attacks can be classified as digital perturbation attacks [42,14,35] and physically
realizable attacks [6,11,46,49]. In the tracking community, multiple attacks have
been proposed to fool the object tracker [20,7]. Fast attack network [30] attacks
the Siamese network based trackers using a drift loss and embedded features. The
attack proposed by Jia et al. [19] degrades the tracking accuracy through an IoU
attack, which sequentially generates perturbations based on the predicted IoU
scores. The attack requires ground-truth when performing the attack. Wiyatno
and Xu [46] propose a method to generate an adversarial texture. The texture
can lock the GOTURN tracker [16] when a tracking target moves in front of it.

2.3 Adversarial Defenses in Tracking

General defense methods for computer vision tasks include adversarial train-
ing [43], increasing labeled and unlabeled training data [39], decreasing the input
dimensionality [41], and robust optimization procedures [52,48]. However, not
many defense methods have been proposed to improve the tracking robustness
under attack. Jia et al. [18] attempt to eliminate the effect of the adversarial
perturbations via learning the patterns from the attacked images. Recently, MTL
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Fig. 2. Overview of the SiamRPN architecture for tracking. For multi-task learning,
the output of the template branch is passed to a keypoint head for keypoint detection.

has been shown to improve the overall network robustness [13], especially in
image segmentation [36] and text classification [33]. Our work is the first that
studies MTL for person tracking with a physically realizable attack.

3 Preliminaries

The input to the tracker can be denoted as {x, z, ȳx, ȳz}, where x is the detection
frame in which the subject is to be tracked, z is the template frame containing
an exemplar representation of the subject, and respectively, ȳx and ȳz are the
ground-truth bounding box coordinates within the corresponding frames.

3.1 Tracking with SiamRPN

In this work, we focus on the Siamese-RPN model (SiamRPN) [28], which is a
widely used tracking framework based on the Siamese architecture. An overview
of the SiamRPN architecture is shown in Figure 2. SiamRPN consists of a
Siamese network for extracting features and a region proposal network (RPN),
also referred to as the RPN head, for predicting bounding boxes.

The Siamese network has two branches: (1) the template branch which receives
a template patch z′ = Γ (z, ȳz, sz) as input; and (2) the detection branch which
receives a detection patch x′ = Γ (x, ȳx, sx) as input. Here, Γ (·) is simply a crop
operation that ensures only a limited context of size s centered on the bounding
box y is passed to the network [28]. The corresponding sizes sz and sx are shown
in Figure 2. For notational convenience, we use z for z′ and x for x′ hereon. The
two branches of the Siamese network use a shared backbone model such that
inputs to both branches undergo the same transformation φ(·). Hence, we can
denote the output feature maps of the Siamese network as φ(z) and φ(x) for the
template and detection branches, respectively. In this work, we use the SiamRPN
model with AlexNet backbone [26].

The RPN head can also be separated into two branches as shown in Figure 2.
Considering m anchors distributed across the detection frame, the classification
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branch predicts whether each respective anchor is a background or foreground
anchor. Hence, the classification branch has 2m output channels corresponding
to m anchors. The regression branch on the other hand predicts 4 box coordinate
regression deltas [38] for each anchor, and therefore has 4m output channels.

While training, the classification and regression branches of the RPN head
yield Lcls and Lreg respectively, where Lcls is the cross-entropy loss and Lreg is
a smooth L1 loss [28]. Finally, the total weighted loss optimized for is as follows:

LTRK(x, z, ȳx) = λCLcls(x, z, ȳx) + λRLreg(x, z, ȳx) (1)

During inference, the network acts as a single-shot detector. Typically, a
sequence of frames x = {x1, . . . xn} is provided with the ground-truth bounding
box coordinates ȳx1 of the first frame as input. Hence, the first frame x1 becomes
the template frame z used to compute the feature map φ(z) once, which can be
considered as detector parameters for predicting bounding box coordinates for
input frames from the same sequence. We denote the predicted bounding box
for an input frame as ŷx. As mentioned previously, SiamRPN crops the context
centered on the ground-truth bounding box. For inference, the context region is
determined by the predicted bounding box of the previous frame. Finally, the
tracking performance is evaluated using a mean intersection-over-union (mIoU)
metric of the predicted and ground-truth bounding boxes across all frames from
all input sequences.

3.2 Multi-task Learning with Shared Backbone

To provide semantic regularization for tracking, we perform joint multi-task
training by attaching a fully convolutional keypoint prediction head to the
template branch of SiamRPN. Our hypothesis is that joint training with an
additional task head attached to the shared backbone would encourage the
backbone to learn more robust features [17] for facilitating multiple tasks. Since
the shared backbone is also used during tracking inference, the learned robust
features can make it harder for adversarial perturbations to fool the model.
We select the task of human keypoint prediction for this purpose as it is more
semantically analogous to the task of person tracking.

The keypoint head is attached to the template branch as it has a more
focused context [28]. Therefore, the keypoint head receives φ(z) as input. The
keypoint head network consists of convolutional blocks followed by a transpose
convolution operation that “upsamples” the intermediate feature map to an
expanded size with number of output channels equaling the number of keypoints
being predicted. Finally, bilinear interpolation is performed to match the size
of the input frame. The resulting feature volume has a shape of H ×W ×K,
where H and W are the height and width of the input frame respectively, and
K is the number of keypoints. Hence, each position in the K-channel dimension
corresponds to a keypoint logit score. Given the ground-truth keypoints k̄z, the
binary cross-entropy loss is computed with respect to each position in the channel

5



dimension. We denote this as LKPT . For multi-task training, the total loss is a
weighted sum:

LMTL(x, z, ȳx, k̄z) = LTRK(x, z, ȳx) + λKLKPT (z, k̄z) (2)

The ground-truth keypoint annotation also consists of a visibility flag that
allows us to suppress spurious loss from being backpropagated for keypoints that
are occluded or not annotated.

3.3 Adversarial Attacks

Adversarial attacks introduce malicious perturbations to the input samples in
order to confuse the tracker into making incorrect predictions. In this work, we
use white-box untargeted attacks that aim to reduce the tracking performance
by minimizing the mIoU metric. Adversarial attacks target a task loss, whereby
the objective is to increase the loss by performing gradient ascent. Given the
predicted and ground-truth bounding boxes ŷx and ȳx respectively, we use the
L1-loss as the task loss as proposed in [46] for attacking an object tracker:

LADV (ŷx, ȳx) = ∥ŷx − ȳx∥1 (3)

Based on means of application of the adversarial perturbation and additional
constraints placed on the perturbation strength, attacks can be further classified
into two distinct types:

Digital Perturbation Attacks. These attacks introduce fine-grained pixel
perturbations that are imperceptible to humans [42,14,35]. Digital perturbation
attacks can manipulate any pixel of the input, but place imperceptibility con-
straints such that the adversarial output xadv is within an lp-ball of the benign
input xben, i.e., ∥xadv − xben∥p ≤ ϵ. Such attacks, although having high efficacy,
are considered to be physically non-realizable. This is due to the spatially un-
bounded granular pixel manipulation of the attack as well as the fact that a
different perturbation is typically applied to each frame of a video sequence.

Physically Realizable Attacks. These attacks place constraints on the input
space that can be manipulated by the attack [6,11,46,49]. In doing so, the ad-
versarial perturbations can be contained within realistic objects in the physical
world, such as a printed traffic sign [6] or a T-shirt [49]. As an attacker can com-
pletely control the form of the physical adversarial artifact, physically realizable
attacks are unbounded in the perceptual space and place no constraints on the
perturbation strength. In this work, we consider a physically realizable attack
based on [46] that produces a background patch perturbation to fool an object
tracker (Figure 1). It is an iterative attack that follows gradient ascent for the
task loss described in Equation (3) by adding a perturbation to the input that is
a product of the input gradient and a step size δ:

x(i) = x(i−1) + δ∇x(i−1)LADV (4)
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4 Experiment Setup

We perform extensive experiments and demonstrate that models trained with
MTL are more resilient to adversarial attacks. The multi-task setting consists of
jointly training a shared backbone for semantically related tasks such as person
tracking and human keypoint detection (Section 4.1). We evaluate the tracking
robustness on a state-of-the-art physically realizable adversarial attack for object
trackers. We test our models on a photo-realistic simulated dataset as well as a
real-world video dataset for person tracking (Section 4.4).

4.1 Architecture

For tracking, we leverage a SiamRPN model (Figure 2) with an AlexNet backbone
and an RPN head as described in [28]. The inputs to the model are a template
frame (127×127) and a detection frame (255×255), fed to the backbone network.
Finally, the RPN head of the model produces classification and localization
artifacts corresponding to m = 5 anchors for each spatial position. The anchors
have aspect ratios of {0.33, 0.5, 1, 2, 3} respectively.

A keypoint head is also attached to the template branch of the network, i.e.,
the keypoint head receives the activation map with dimensions 6× 6× 256 as
input. We attach the keypoint head to the template branch as the template
frame has a more focused context, and typically has only one subject in the
frame, leading to more stable keypoint training. The base keypoint head has
2 convolutional blocks with {128, 64} channels respectively. We also perform
ablation experiments by increasing the depth of the keypoint head to 4 blocks
with {128, 128, 64, 64} channels respectively (Section 5.2). The convolutional
blocks are followed by a transpose convolution block with 17 output channels,
which is the same as the number of human keypoints represented in the MS
COCO format [32]. Bilinear interpolation is performed on the output of the
transpose convolution block to expand the spatial output dimensions, yielding an
output with dimensions 127× 127× 17. Hence each of the 17 channels correspond
to spatial logit scores for the 17 keypoints.

4.2 Training Data

We found that there is a dearth of publicly available tracking datasets that
support ad-hoc tasks for enabling multi-task learning. Hence, for our MTL
training, we create a hybrid dataset that enables jointly training with person
tracking and human keypoint detection. For human keypoint annotations, we
leverage the MS COCO dataset [32] which contains more than 200k images
and 250k person instances, each labeled with 17 human keypoints. The MS
COCO dataset also annotates person bounding boxes that we use for the tracking
scenario. As the MS COCO dataset consists of single images, there is no notion
of temporal sequences in the input. Hence, for person tracking, we leverage data
augmentation to differentiate the template and detection frames for the person
instance annotation from the same image. Therefore, the MS COCO dataset

7



Fig. 3. Annotated training examples from the MS COCO (left) and LaSOT (right)
datasets for person tracking. MS COCO has additional human keypoint annotations.

allows us to train both the RPN head and keypoint head jointly for person
tracking and human keypoint detection. We use the defined train and val splits
for training and validation. Additionally, we merge this data with the Large-scale
Single Object Tracking (LaSOT) dataset [12]. Specifically, we extract all videos
for the “person” class for training the person tracking network. This gives us
20 video sequences, of which we use the first 800 frames from each sequence
for training and the subsequent 100 frames for the validation set. Hence, the
combined hybrid dataset from MS COCO and LaSOT enables our multi-task
training. Figure 3 shows 2 example frames from MS COCO and LaSOT datasets.

4.3 Multi-Task Training

For the multi-task training, we fine-tune a generally pre-trained SiamRPN object
tracker jointly for the tasks of person tracking and human keypoint detection.
As we are specifically interested in the impact of multi-task training, we use the
same loss weights λC and λR as proposed in [28] for the tracking loss LTRK .
We perform an extensive sweep of the MTL loss weight λK associated with
the keypoint loss LKPT (Section 5.1). For the baseline, we perform single-task
learning (STL) for person tracking by dropping the keypoint head and only
fine-tuning the RPN head with the backbone, i.e., the STL baseline has λK = 0.
All STL and MTL models are trained with a learning rate of 8 × 10−4 that
yields the best baseline tracking results as verified using a separate validation
set. We also study the impact of pre-training the keypoint head separately before
performing MTL (Section 5.3). For pre-training the keypoint head, we drop the
RPN head and freeze the parameters of the backbone network. This ensures
that the RPN head parameters are still compatible with the backbone after
pre-training the keypoint head. The keypoint head is pre-trained with a learning
rate of 10−3. We train all models for 50 epochs and select the models with best
validation performance over the epochs.

4.4 Evaluation

We evaluate our trained STL and MTL models for the tracking scenario using the
mIoU metric between ground-truth and predicted bounding boxes, which is first
averaged over all frames for a sequence, and finally averaged over all sequences.
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Fig. 4. Example video frames from the ARMORY-CARLA dataset showing static
adversarial patches for (a) STL and (b) MTL for an attack with δ = 0.1 and 10 steps.
The patch is able to lock onto the STL tracker prediction (top), whereas the MTL
tracker is consistently able to track the target (bottom).

For testing the adversarial robustness of person tracking in a practical scenario,
we leverage a state-of-the-art physically realizable adversarial attack for object
trackers [46]. The attack adds a static adversarial background patch to a given
video sequence that targets the tracking task loss LADV . At each iteration of
the attack, gradient ascent is performed on the task loss as per Equation (4)
with a step size δ. In order to observe the effect of varying the step size and
attack iterations, we experiment with multiple values and report results for
δ = {0.1, 0.2}, which we found to have stronger adversarial effect on the tracking
performance. The attack proposed in [46] has no imperceptibility constraints and
is unbounded in the perceptual space, and can thus be considered an extremely
effective adversarial attack. As the attack relies on the gradients of the task loss,
we implement an end-to-end differentiable inference pipeline for the SiamRPN
network using the Adversarial Robustness Toolbox (ART) framework [37].

We evaluate the adversarial robustness of STL and MTL models on 2 datasets:

ARMORY-CARLA. This is a simulated photo-realistic person tracking dataset
created using the CARLA simulator [10], provided by the ARMORY test bed [44]
for adversarial ML research. We use the “dev” dataset split. The dataset consists
of 20 videos of separate human sprites walking across the scene with various
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Fig. 5. Example video frames and the corresponding adversarial IoU charts for the
video from the OTB2015-Person dataset showing the constructed static adversarial
patches for STL (red) and MTL (orange) for an attack with δ = 0.1 and 10 steps. The
dashed blue box shows the ground-truth target. The attack misleads the STL tracker
early, but struggles to mislead the MTL tracker until much later. The unperturbed gray
regions in the patch are locations which are never predicted by the tracker.

background locations. Each video has an allocated patch in the background
that can be adversarially perturbed to mimic a physically realizable attack for
person tracking. The dataset also provides semantic segmentation annotations
to ensure that only the patch pixels in the background are perturbed when a
human sprite passes in front of the patch. Figure 4 shows example video frames
from the dataset where this can be seen. We find that the SiamRPN person
tracker, having been trained on real-world datasets, has a reasonably high mIoU
for tracking the human sprites when there is no attack performed; thus qualifying
the photo-realism of the simulated scenario.

OTB2015-Person. We use the Object Tracking Benchmark (OTB2015) [47]
to test the robustness of MTL for person tracking on a real-world dataset. We
extract all videos that correspond to the task of person tracking, which yields
38 videos that we call the OTB2015-Person split. As the dataset is intended
for real-world tracking and is not readily amenable to implement physically
realizable attacks, we digitally modify the videos for our attack to work. For
each video, we overlay a static background patch that has a margin of 10% from
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Fig. 6. A unified visualization of the adversarial mIoU results from Table 1 for the
ARMORY-CARLA dataset with δ = 0.1 (left) and δ = 0.2 (right). The orange dots
represent the MTL mIoU’s and the gray flat lines represent the STL baseline mIoU’s.
We see that the hollow orange dots (λK = 0.2) are consistently above the STL baseline.

each edge, covering 64% of the total area that can be perturbed by the attack.
Finally, for each frame of a video, we only uncover the region annotated by the
ground-truth bounding box with a padding of 25 pixels on each side. Hence, the
annotated subject is always completely visible to the tracker with a digitally
perturbed adversarial patch boundary. Figure 5 shows example video frames with
the static patch attack as described here. To ensure that the tracker gets a clean
ground-truth template, we do not perturb the first frame. Since this implements
an unbounded digital attack on inputs from the real-world perceptual space,
the attack is much stronger than real-world physically realizable attacks. For
computational tractability, we only attack the first 100 frames.

5 Results

Our experiments reveal that models trained with MTL consistently make it
harder for an adversarial attack to succeed by making the shared backbone
network learn robust MTL features. Given an iterative attack, higher number of
iterations corresponds to increased attack difficulty and higher attacker cost. We
report the mIoU for increasing attack steps from {10, 20, 50, 100, 200, 500, 1000}
for the ARMORY-CARLA dataset in Table 1. We also visually summarize these
gains from the MTL approach for the ARMORY-CARLA dataset in Figure 6.
For λK = 1.0, which is the base MTL setting, the MTL model improves upon the
benign mIoU from 69.45 to 72.08. Additionally, the MTL model is more robust
than the STL baseline up to 100 attack steps for δ = 0.1 and 50 attack steps
for δ = 0.2. This implies the attack cost is higher for attacking an MTL model
compared to its STL counterpart. The mIoU for increasing attack steps for the
OTB2015-Person dataset are shown in Table 2. We observe a degradation in the
benign MTL performance in this case, which may partly be attributed to the
resolution mismatch between the high resolution training examples [32,12] from
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Table 1. Adversarial mIoU results for ARMORY-CARLA dataset (↑ is better). Values
highlighted in orange show the cases in which MTL is more robust than STL. MTL
model with λK = 0.2 is consistently harder to attack than the STL model, and most
often has the best performance. This table is also visualized in Figure 6 for clarity.

STL MTL
Steps λK = 0.0 λK = 0.2 λK = 0.4 λK = 0.6 λK = 0.8 λK = 1.0

benign 0 69.45 69.59 69.46 69.70 72.20 72.08

δ = 0.1

10 48.25 51.88 51.44 49.74 50.24 49.50
20 40.70 41.44 41.22 43.63 45.05 44.47
50 32.07 33.04 37.54 34.63 33.49 34.49
100 26.57 28.16 30.56 29.33 29.91 30.62
200 24.72 25.19 22.73 25.70 21.73 22.12
500 21.47 24.38 20.81 23.61 18.15 18.04
1000 20.54 21.05 17.90 19.64 17.30 18.37

δ = 0.2

10 41.03 45.62 48.13 48.63 44.68 49.50
20 37.04 39.78 39.57 40.00 37.72 39.81
50 27.32 31.32 30.33 29.31 28.55 30.86
100 25.24 26.76 26.89 24.95 26.03 25.21
200 22.95 25.29 22.54 20.41 19.27 22.16
500 19.71 23.13 21.23 17.11 17.18 18.63
1000 18.04 19.02 18.16 16.77 18.04 18.97

orange = MTL > STL; gray = MTL ≤ STL; bold = highest in row

MS COCO and LaSOT datasets, compared to lower resolution evaluation videos
samples from the OTB2015 dataset. In the adversarial case, the base MTL model
is more robust than STL baseline for up to 200 steps for δ = 0.1. For δ = 0.2,
the base MTL model fails to show robustness for 20 steps, and slightly better
robustness for other attack steps. We see further improvements in the adversarial
resiliency for varying λK , discussed in Section 5.1.

5.1 Varying MTL Weight

We study the effect of varying the MTL weight λK , which controls the amount
of keypoint loss LKPT that is backpropagated. We train separate models by
enumerating λK = {0.2, 0.4, 0.6, 0.8, 1.0}, and perform adversarial patch attack on
each model for multiple adversarial settings. The results for ARMORY-CARLA
and OTB2015-Person are shown in Table 1 and Table 2 respectively. We find that
for the given shallow keypoint head architecture ({128, 64} channels), a lower
value of λK is more optimal under adversarial attack. For both datasets, the MTL
model with λK = 0.2 is consistently harder to attack than the STL model, and
most often has the best performance for the corresponding adversarial setting.
Since a shallow keypoint head has relatively lower learning capacity, a higher
λK value will force the shared backbone to focus excessively on the keypoint
detection task, causing deterioration in the robust MTL features learned for the
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Table 2. Adversarial mIoU results for OTB2015-Person dataset (↑ is better). In most
cases, MTL models are harder to attack compared to STL model, with λK = 0.2 being
most robust to the attack across several attack steps and step sizes.

STL MTL
Steps λK = 0.0 λK = 0.2 λK = 0.4 λK = 0.6 λK = 0.8 λK = 1.0

benign 0 69.42 68.62 67.84 67.89 65.97 68.50

δ = 0.1

10 54.29 57.29 57.78 57.95 57.09 56.24
20 52.62 55.45 55.68 55.56 53.01 52.68
50 48.54 52.84 52.33 50.54 50.94 50.67
100 44.92 52.45 48.54 48.63 48.77 48.25
200 45.40 47.73 49.18 47.26 46.50 47.34

δ = 0.2

10 53.93 57.65 56.60 55.70 56.46 54.34
20 53.57 55.21 56.16 56.08 54.46 52.86
50 49.15 52.81 51.12 49.48 50.71 49.65
100 47.27 52.72 49.74 48.13 49.87 47.81
200 46.19 51.05 48.83 47.24 48.26 47.04

orange = MTL > STL; gray = MTL ≤ STL; bold = highest in row

tracking task. From Table 1, although we observe better generalization for the
MTL model with λK = 1.0 in the benign case (mIoU = 72.08), the adversarial
robustness quickly gives away (at 100 steps for δ = 0.2). Conversely, a lower value
of λK = 0.2 offers the best trade-off for generalization and robustness.

5.2 Increasing Depth of Keypoint Head

Following the observations with a shallow keypoint head architecture, we also
experiment with increasing the depth of the keypoint head from {128, 64} channels
to {128, 128, 64, 64} channels, doubling the parameters of the keypoint head
network. Table 3 shows the ablation results for the shallow and deep keypoint
heads with the ARMORY-CARLA dataset for λK = {0.2, 1.0} and δ = 0.1. In
this section we will focus on the “not pre-trained” results. The robustness of the
MTL model degrades for λK = 0.2 when the model depth is increased, and is
easier to attack compared to the STL model. However, the MTL model with
deeper keypoint head has the best adversarial robustness for a higher λK = 1.0,
even outperforming the MTL model with shallow keypoint head for λK = 0.2. As
the deeper keypoint head has a relatively higher learning capacity, it can learn
to detect keypoints with smaller changes to the feature space of the backbone
network. Hence, a higher λK is required to adequately supervise the backbone in
learning robust MTL features. Although we see a decline in the benign mIoU for
increasing depth, the deep MTL model with λK = 1.0 has overall best robustness.
On the other hand, the shallow MTL model with λK = 0.2 has better adversarial
robustness than the STL model as well as better benign performance.
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Table 3. Ablation study with the ARMORY-CARLA dataset for attack step size
δ = 0.1. We report the adversarial mIoU results (↑ is better).

λK = 0.0 λK = 0.2 λK = 1.0
not pre-trained pre-trained not pre-trained pre-trained

Steps (STL) shallow deep shallow deep shallow deep shallow deep

0 69.45 69.59 66.85 69.62 69.36 72.08 67.28 64.14 69.40

10 48.25 51.88 45.28 47.05 48.70 49.50 55.46 49.91 49.77
20 40.70 41.44 38.54 39.94 40.47 44.47 47.44 43.10 42.55
50 32.07 33.04 31.71 34.11 35.28 34.49 36.52 36.31 32.96
100 26.57 28.16 27.21 31.33 32.04 30.62 30.07 32.14 31.60
200 24.72 25.19 24.15 25.67 25.34 22.12 26.53 25.16 24.77

orange = MTL > STL; gray = MTL ≤ STL; bold = highest in row

5.3 Pre-training the Keypoint Head

As we start with a pre-trained SiamRPN model and an untrained keypoint head,
we also study the impact of pre-training the keypoint head before performing
MTL fine-tuning. Table 3 shows the results of this ablation study. We report
the MTL performance with and without pre-training the keypoint head with
the ARMORY-CARLA dataset for λK = {0.2, 1.0} and δ = 0.1. For the shallow
keypoint head architecture, we see minor improvements in the MTL performance
for a higher value of λK = 1.0, especially at higher number of attack steps.
However, there is a sharp decrease in the benign performance (benign mIoU =
64.14). On the other hand, the deep keypoint head architecture shows relative
improvement with pre-training for a lower value of λK = 0.2 (benign mIoU
= 69.36). Overall, there is no significant advantage observed from pre-training
the keypoint head. A pre-trained keypoint head would have lower potential to
significantly modify the learned feature space of the shared backbone as it is
already near the optima for the keypoint loss space.

6 Conclusion

We perform an extensive set of experiments with adversarial attacks for the task
of person tracking to study the impact of multi-task learning. Our experiments
on simulated and real-world datasets reveal that models trained with multi-task
learning for the semantically analogous tasks of person tracking and human
keypoint detection are more resilient to physically realizable adversarial attacks.
Our work is the first to uncover the robustness gains from multi-task learning in
the context of person tracking for physically realizable attacks. As the tracking
use case has widely ranging real-world applications, the threat of adversarial
attacks has equally severe implications. We hope our work triggers new research
in this direction to further secure tracking models from adversarial attacks.
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43. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.: En-
semble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204
(2017)

44. Two Six Technologies: ARMORY. https://github.com/twosixlabs/armory
45. Wang, X., Shu, X., Zhang, Z., Jiang, B., Wang, Y., Tian, Y., Wu, F.: Towards

more flexible and accurate object tracking with natural language: Algorithms and
benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 13763–13773 (2021)

46. Wiyatno, R.R., Xu, A.: Physical adversarial textures that fool visual object tracking.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 4822–4831 (2019)

47. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 37(9), 1834–1848 (2015).
https://doi.org/10.1109/TPAMI.2014.2388226

48. Xu, H., Ma, Y., Liu, H.C., Deb, D., Liu, H., Tang, J.L., Jain, A.K.: Adversarial
attacks and defenses in images, graphs and text: A review. International Journal of
Automation and Computing 17(2), 151–178 (2020)

49. Xu, K., Zhang, G., Liu, S., Fan, Q., Sun, M., Chen, H., Chen, P.Y., Wang, Y., Lin,
X.: Adversarial T-shirt! evading person detectors in a physical world. In: European
conference on computer vision. pp. 665–681. Springer (2020)

17

https://arxiv.org/pdf/1807.01069
https://arxiv.org/pdf/1807.01069
https://github.com/twosixlabs/armory
https://doi.org/10.1109/TPAMI.2014.2388226


50. Yagi, T., Mangalam, K., Yonetani, R., Sato, Y.: Future person localization in
first-person videos. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 7593–7602 (2018)
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