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Abstract

Visual object tracking is an important application of
computer vision. Recently, Siamese based trackers have
achieved a good accuracy. However, most of Siamese based
trackers are not efficient, as they exhaustively search po-
tential object locations to define anchors and then clas-
sify each anchor (i.e., a bounding box). This paper devel-
ops the first Anchor Free Siamese Network (AFSN). Specif-
ically, a target object is defined by a bounding box cen-
ter, tracking offset and object size. All three are regressed
by Siamese network with no additional classification or re-
gional proposal, and performed once for each frame. We
also tune the stride and receptive field for Siamese network,
and further perform ablation experiments to quantitatively
illustrate the effectiveness of our AFSN. We evaluate AFSN
using five most commonly used benchmarks and compare
to the best anchor-based trackers with source codes avail-
able for each benchmark. AFSN is 3 × −425× faster than
these best anchor based trackers. AFSN is also 5.97% to
12.4% more accurate in terms of all metrics for benchmark
sets OTB2015, VOT2015, VOT2016, VOT2018 and Track-
ingNet, except that SiamRPN++ is 4% better than AFSN
in terms of Expected Average Overlap (EAO) on VOT2018
(but SiamRPN++ is 3.9× slower).

1. Introduction

Video object tracking, which locates an arbitrary object
in a changing video sequence, powers many computer vi-
sion topics such as automatic driving and pose estimation.
Liu et al. [27] focus on the task of searching a specific vehi-

Figure 1. Comparisons of our tracker with SiamRPN. AFSN is
able to resist the interference of similar objects, illumination vari-
ation, and predict a more precise bounding box than SiamRPN.
When the ratio of length to width is abnormal, AFSN can still es-
timate the bounding box accurately.

cle that appears in the surveillance networks. Doellinger et
al. [9] use tracking methods to predict local statistics about
the direction of human motion. A core problem in tracking
is how to locate an object accurately and efficiently in chal-
lenging scenarios like background clutter, occlusion, scale
variation, illumination change, deformation and other vari-
ations [42].

Current trackers can be generally classified into two
branches, i.e., generative and discriminative methods. Gen-
erative methods [18, 28, 29, 38, 46] consider tracking as a
reconstruction problem and they maintain a template set on-
line to represent the moving target. Discriminative trackers
like MOSSE [5], Struck [12], CSK [14], KCF [15] learn
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a classifier between foreground and background [2, 1, 10].
Correlation filter (CF) trackers can update online with cur-
rent video due to its high efficiency. However, a clear defi-
ciency of using data derived exclusively from current video
results in learning a comparatively simple model. In con-
trast, trackers based on deep neural network aim to make
full use of the entire tracking dataset [31]. Siamese net-
works, which track an object through similarity compari-
son, have developed into various versions in the tracking
community [4, 11, 25, 24, 13, 37, 39, 43, 40, 44].

Although these tracking approaches obtain balanced ac-
curacy and speed, most of the successful Siamese trackers
rely on the anchors generated before tracking. A tracking
object is represented by an axis-aligned bounding box that
encompasses the object. The localization of the object be-
comes an image classification of an extensive number of
potential anchors. Since this method needs to enumerate all
possible object locations and regress a normalized distance
for each prospective bounding box, it is inefficient. Further-
more, it restricts the ability of proposing accurate bounding
box when the ratio of length to width is abnormal.

To deal with this challenge, we propose the first tracker
without using an anchor. First, our Anchor Free Siamese
Network (AFSN) represents an object with merely a center
point, a tracking offset and the object size. Compared with
anchor-based trackers, it has a reduced complexity. Sec-
ond, we model an object through the network inference re-
sult rather than modifying the object position and size with
the bounding boxes proposed in advance. Only one esti-
mation is conducted for each frame, with no need to clas-
sify each potential anchor. The inference efficiency is im-
proved significantly. Third, our method leverages all im-
ages in the large scale supervised tracking datasets. Clearly,
using videos from various categories can largely improve
robustness. Ablation experiments also demonstrate the ef-
fectiveness of our AFSN.

To further improve the tracking quality, we test differ-
ent network backbones. We find that the accuracy drops
severely when the network backbone grows deeper. This
problem has also been discovered in SiamDW [45]. One
reason is that these deeper and wider network architectures
are mainly designed for image classification tasks, but not
necessarily are optimal for tracking. We also reveal that
a bigger network stride improves overlap area of receptive
fields for two neighboring output score maps, but reduces
tracking position precision, so the network stride needs to
be optimized. In order to take full advantage of modern
deep neural networks, we in this paper train 8 different
backbones considering stride, receptive field, group convo-
lution and kernel size. Section 4 gives a further analysis on
the backbone design. The resulting AFSN outperforms a
state-of-the-art tracker SiamRPN, as illustrated in Fig. 1.

We evaluate the proposed method using most commonly

used datasets including OTB2015 [42], VOT2015 [22],
VOT2016 [19], VOT2018 [20] and TrackingNet [30]. Our
AFSN can achieve leading performance in all of the 5
datasets. Compared with SiamRPN, AFSN increases the
precision rate and success rate by 0.93% and 5.97% on
OTB2015, respectively. In terms of EAO (expected average
overlap), it outperforms SiamRPN on VOT2015, VOT2016
and VOT2018 by 0.381, 0.372 and 0.398, respectively.
Meanwhile, AFSN runs at 136 FPS (frames per second) on
Titan Xp.

The contributions of this paper can be summarized in
three-fold as follows: 1) We propose the Anchor Free
Siamese Network (AFSN), which is the first anchor free
end-to-end tracker trained with large scale dataset. 2) A
quantitative analysis of the network architecture, especially
receptive field and network stride, leads to the best network
backbone for our AFSN. 3) Our tracker AFSN has balanced
accuracy and robustness for five commonly used datasets.

The rest of the paper is organized as follows. Section
2 introduces related work. Section 3 presents our AFSN,
and Section 4 optimizes the network backbone. Section 5
performs experimental study, and Section 6 concludes the
paper.

2. Related work

2.1. Trackers based on Siamese network

Recently, Siamese network has drawn widespread atten-
tion in tracking community because of its good accuracy
and speed, and the capability to make full use of the track-
ing dataset during offline training. Basically, a Siamese net-
work is used for comparing the exemplar and instance im-
age pairs, and exporting the final results by a score map.
SINT [37] proposes learning a generic matching function
for tracking, which can be applied to new tracking videos
of previously unseen target objects. GOTURN [13] adapts
the Siamese network to tracking and utilizes fully connected
layers as fusion tensors. SiamFC [4] introduces the corre-
lation operator. Dense and efficient sliding window eval-
uation is achieved with a biliear layer that computes the
cross correlation of its two inputs, namely instance branch
and exemplar branch. SiamRPN [25] integrates a popu-
lar detection technique, namely region proposal network
(RPN) with SiamFC. The tracker refines the proposal to
avoid the expensive multi-scale tests. SiamRPN++ [24] is a
ResNet-driven Siamese tracker, which performs layer-wise
and depth-wise aggregations. However, a tracking object is
represented by an axis-aligned bounding box that emcom-
passes the object. The localization of the object becomes
an image classification of an entensive number of potential
anchors. Since this method needs to enumerate all possi-
ble object locations and regress a normalized distance for
all propective bounding boxes, sliding window based object
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Figure 2. Main framework of Anchor Free Siamese Network (AFSN): On the left is the feature extraction subnetwork. Three branches,
namely classification branch, offset branch and scale branch lies in the middle. These three branches are kused for classifying foreground
and background, eliminating the deviation and predicting the object size. Then, depth-wise correlation is performed to obtain the final
2-layer score map, 2-layer tracking offset for x and y axis and 2-layer object size: width and height.

trackers are however a bit inefficient.

2.2. Dataset

OTB2015 [42] constructs a benchmark dataset with 100
fully annotated sequences to facilitate the performance eval-
uation. It is an extension of OTB2013 [41], which contains
50 representative video sequences. The VOT [19, 21, 20]
datasets are constructed by a novel video clustering ap-
proach based on visual properties. The dataset is fully an-
notated, all the sequences are labelled per-frame with visual
attributes to facilitate in-depth analysis. The OTB [41, 42],
ALOV [35] and VOT [19, 21, 20] datasets represent the
initial attempts to unify the testing data and performance
measurements of generic object tracking. Recently, GOT-
10k [17] has been proposed and is larger than most tracking
datasets, which offers a much wider coverage of moving
object. Several competitive trackers (MDNet [31], SINT
[37], GOTURN [13]) are trained on video sequences using
OTB and VOT dataset. However, this practice has been pro-
hibited in the VOT challenge. Thus, we train our network
with the GOT-10k dataset, which differs from the video se-
quences in the benchmark. It is less likely for our model to
over-fit the scenes and objects in the benchmark.

2.3. Anchor free tracking

Faster RCNN [34] generates region proposal within the
detection network. It samples fixed shape anchors on a
low resolution image and classifies each into foreground or
background. SiamRPN [25] has adopted RPN into track-
ing scenario. The improved versions of SiamRPN, DaSi-
amRPN [48] and SiamRPN++ [24] are all successful track-
ers. However, the enumeration of a nearly exhausted list

of anchors is inefficient and requires extra post-processing.
The tracking accuracy is also restricted by the pre-proposed
fixed shape bounding boxes.

Keypoint estimation has some great applications in de-
tection. CornerNet [23] detects two bounding box corners
as keypoints. ExtremeNet [32] predicts the four corners and
center points for all objects. CenterNet [47] extracts a single
center point per object without the need for post-processing.
Since anchor free method solely generates the bounding box
once in one inference time, its simplicity can boost the deep
learning trackers. Different anchor free trackers represent
the object using different techniques. Some represent the
four corners, others represent the center point. This pro-
vides a variety of opportunities using anchor free in track-
ing. Anchor free has many successful applications in detec-
tion because of its efficiency and great performance. How-
ever, it has not been fully exploited in tracking.

3. Siamese tracking without anchors

In this section, we describe the proposed AFSN frame-
work in detail. As shown in Fig. 2, the AFSN consists of
a Siamese network for feature extraction. Three branches,
namely classification branch, offset branch and scale branch
are used for classifying foreground and background, elim-
inating the deviation and predicting the object size. Image
pairs are fed into the proposed framework for end-to-end
training.

3.1. Bounding box center

Our aim is to represent the object with the bounding
box center. Scales and tracking offset are regressed di-
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rectly from image features at the center location. Let Y ∈
RW×H×3 be an output score map of classification branch
with width W and height H. Suppose Ŷ(xi,yj ,k) is the value
of point (xi, yj) on the score map of the kth frame. A pre-
diction Ŷ(xi,yj ,k) = 1 corresponds to the tracking object
center, while Ŷ(xi,yj ,k) = 0 is the background.

The classification labels Y are designed to represent var-
ious foreground objects. Therefore, the groundtruth key-
points are designed to obey two-dimension normal distribu-
tion. The mean value is the center of bounding box. Ac-
cording to the three sigma rule [33], the probability for X
falling away from its mean by more than 3 standard devia-
tion is at most 5% ifX obeys the normal distribution. Thus,
the standard deviation in our label is one sixth of the width
and height:

Y =
1

2πσ1σ2
exp

{
−1

2

[
(x− µ1)

2

σ2
1

+
(y − µ2)

2

σ2
2

]}
(1)

The response value intensifies with the increase of overlap-
ping area between the exemplar and the instance. Hence,
the score around the edge of bounding box should be lower
than the center part.

The training objective is a penalty-reduced pixel-wise lo-
gistic regression with focal loss [26]:

Lcls = −
1

N

∑

(
1− Ŷxyk

)α
log(Ŷxyk) Yxyk = 1

(1− Yxyk)β
(
Ŷxyk

)α
log(1− Ŷxyk)

Yxyk = 1,

(2)
where α and β are hyper parameters of the focal loss, and
N is the number of frames in one epoch. We use α = 2
and β = 4 in all our experiments, following Law and Deng
[23].

3.2. Tracking offset

Since the input exemplar size, instance size and the out-
put score map are 127× 127, 255× 255 and 17× 17 sepa-
rately, the stride of the network is 8. To eliminate the devi-
ation and restore the gap, a tracking offset is added for each
point on the score map. For the i th point, tracking offsets

Ok =
{
(δx

(i)
k , δy

(i)
k )
}n
i=1

can be expressed as:

Ok = (xk/stride− x̂k, yk/stride− ŷk) (3)

Then, the offset is trained with the L1 loss Loff . Each
point on the score map is considered, which assists locating
the bounding box even if the center peak deviates from the
groundtruth.

3.3. Scale estimation

To estimate the size of an object is equivalent to regress
the object size Sk = (xk2 − xk1, yk2 − yk1) in each frame.

To make sure the estimation falls in the positive region, we
represent the size with αk and βk as:

Sk =
(
eαk , eβk

)
(4)

Then, a simple prediction is conducted. The L1 loss for
the scale estimation at the bounding box center is:

Lscl =
1

N

∑
k

[
|α̂Pk

− αk|+
∣∣∣β̂Pk

− βk
∣∣∣] (5)

Figure 3. The outputs of the proposed anchor free Siamese net-
work: score map, tracking offset and object size.

3.4. Training

The feature extraction subnetwork is fully-convolutional.
The search of optimum network architecture is presented in
Section 4. Two branches compose the subnetwork. The
template branch receives the exemplar patch (denoted as z).
The search branch receives the full-scale instance patch (de-
noted as x). The two feature extraction branches share the
same parameters. Thus, the same types of features can be
compared in the following network. Let Lt represent the
extraction operator (Ltx) [u] = x[u− t], and the definition
of fully convolution within stride k can be defined as:

h (Lktx) = Lth (x) (6)

Correlation operator is a batch processing function,
which compares the Euclidean distance or similarity met-
ric between φ(z) and φ(x). Note that φ(z) and φ(x) de-
note the outputs of template and search branches, respec-
tively. Combining deep features in a higher dimension is
equivalent to dense sampling around the bounding box and
evaluating similarity after each feature extraction. How-
ever, the former method is more efficient due to the smaller
scale of higher dimension feature. For convenience, let
u (φ(z), φ(x)) denote the output of correlation function.

Since no normalization for offset and scale is included,
the overall loss function is:

loss = Lcls + λoffLoff + λsclLscl, (7)

where λoff and λscl are two hyper-parameters to balance
the three parts. In our experiment, we set λoff = 0.1 and
λscl = 4. Only this single network is used to predict the
bounding box center Ŷk, tracking offset Ôk and object size
Ŝk
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Figure 4. Architectures of designed backbone networks for AFSN. In this architecture list, k is the kernel size, s is the general convolution
stride and group is the number of group convolution. on the bottom is the success rate tested on OTB2015 benchmark.

3.5. Tracking

At inference time, the points with the highest response
score are extracted in the score map. In order to avoid
noises or sudden changes in the background, we also ap-
ply a hanning window on the final score map. Suppose
P̂k = (x̂k, ŷk) is the predicted center point in the k th frame.
Combining the regressed tracking offset Ôk = (δx̂k, δŷk)

and the object size Ŝk = (ŵk, ĥk), the estimated bounding
box can be expressed as:(

x̂k + δx̂k − ŵk/2, ŷk + δŷk − ĥk/2, ŵk, ĥk
)

(8)

A more explicit way of illustrating the Siamese output is
shown in Figure 3.

4. Network backbone

This section presents the process of optimizing the net-
work backbone for the proposed AFSN tracker. Stride, re-
ceptive field, group convolution and kernel size are the im-
pact factors of different networks. For a faster network
searching process, the backbone networks are trained by
40% GOT-10k dataset [17] with 20 epochs.

With the size of the input image and output score map,
the stride of Siamese trackers can be calculated as:

instance− exemplar
scoremap− 1

= stride (9)

The aggregation of different kernel size controls the re-
gion of the receptive field. A larger receptive field provides
greater image context, but shallow features like color, shape
will be lost. A smaller receptive field focuses on several par-
ticular parts on objects, but it cannot capture the structure of
target objects. From Eq. 9, we can find that if we increase
the receptive field, the score map size will decrease because
more information are contained in one convolution. Then,
the stride will increase, leading to a larger gap between two
exemplar images. The final tracking results are generally
correct around the target object, but the accurate localiza-
tion and scale estimation cannot be achieved. If the recep-
tive field decreases in order to capture the detail features,
the gap will also decrease. However, once the bounding
box deviates from the tracking object, it shows less robust-
ness to relocate the object. Although the predicted scale will
be more accurate in this scenario, the accuracy will not in-
crease due to the poor robustness, In Siamese tracking, tem-
plate image is not updated online, which further decreases
the accuracy. This is a common contradictory in Siamese
network, and it also explains why the backbone networks in
Siamese trackers are relatively shallow.

To optimize and search for the best backbone network,
8 different backbones are trained as shown in Fig. 4. Net-
work stride affects the overlap area of receptive fields for
two neighboring output score maps. The proposed AFSN
prefers a relatively small network stride, which is around
7 to 9 (AFSN1 vs.AFSN6 vs.AFSN8). In these cases, the
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depth of the shallow layers largely affect the success rate.
Since shallow features like color and shape can be applied
on several similar background objects, there is no need
to extract more shallow features. Therefore, the receptive
field is better set at 70% to 80% of the exemplar image.
Group convolution separates different channels to differ-
ent kernels, which increases the robustness of the track-
ing (ASFN4 vs.AFSN7). It also decreases the computa-
tion amount. More channel numbers extract more features
and offer more similarity information to compare, the op-
timum channel numbers for deeper layers is 256 (AFSN1
vs.AFSN2 vs.AFSN3).

5. Experiments
This section presents the results of our anchor free

Siamese network on five challenging tracking datasets,
i.e., OTB2015, VOT2015, VOT2016, VOT2018 and Track-
ingNet. All the tracking results are compared with the state-
of-the-art trackers using the reported results to ensure a fair
comparison.

5.1. Implementation details

The parameters in the proposed AFSN are trained from
scratch, and the overall training objective optimizes the loss
function in Eq. 7 with SGD. There are totally 50 epochs
conducted and the learning rate decreases in the log space
from 10−3 to 10−6. Since the loss in tracking offset oc-
cupies most of the loss in the first phase of training, we
set a cut off at 10−8 for the offset loss. We extract image
pairs from GOT-10k dataset for training and test on OTB
and VOT dataset to verify the feasibility and efficiency of
our model. The template image is cropped centering on the
foreground object with size of A×A:

(w + p)× (h+ p) = A2, (10)

where w, h are the target bounding box width and height
and p = w+h

2 . For the template branch, A is 127, and for
the instance branch, A is 255.

5.2. Ablation experiments

To investigate the impact of anchor free method, we
change the training label for SiamFC and SiamRPN with-
out changing the input and hyper-parameters of the original
models. SiamFC finds the best tracking scale by enumerat-
ing three potential ratio: 1.025−1,0,1. We represent it with a
new score map following the two-dimension normal distri-
bution. The size can be directly predicted according to the
response. Through combining the original model with the
newly designed label, the precision rate and the success rate
on OTB2015 grow 7.65% and 5.15%, as shown in Fig. 5
and 6. We also apply this approach to SiamRPN. The preci-
sion rate drop a little, mainly because the tracking offset is

not included. The position estimation may drift caused by
the locations of the pre-proposed anchors. Even though no
offset is incorporated, the success rate increases 3.14%. The
results demonstrate that the anchor free design can improve
the tracking performance.

Figure 5. Ablation experiments: precision plot on OTB2015

Figure 6. Ablation experiments: success plot on OTB2015

5.3. Results on OTB2015

OTB-2015 Benchmark The standardized OTB bench-
mark provides a fair test for both accuracy and robustness.
The benchmark [42] considers the precision plot and the
success plot of one path evaluation (OPE). The precision
plot considers the percentage of frames in which the es-
timated locations are within a given threshold distance of
the target bounding box. The definition of average suc-
cess rate is that a tracker is successful in a given frame if
the intersection-over-union between its estimation and the

6



groundtruth is above a certain threshold.
We compare our anchor free Siamese tracker on

the OTB2015 with the state-of-the-art trackers including
SiamRPN [25], ACFN [6], Staple [3],SiamFC [4], CNN-
SVM [16], DSST [7], CF2 [36], MOSSE [5], KCF [15],
CSK [14]. Fig. 7 and 8 show that our tracker produces lead-
ing results. Compared with the recent SiamRPN [25], the
precision rate and success rate increase 0.93% and 5.97%,
respectively.

Figure 7. Precision plot of OTB2015

Figure 8. Success plot of OTB2015

5.4. Results on VOT2015

The VOT2015 dataset consists on 60 sequences [22].
The overall performance is evaluated using Expected Aver-
age Overlap (EAO), which takes account of both accuracy
and robustness. Besides, the speed is evaluated with a nor-
malized speed Equivalent Filter Operations (EFO).

We compared our AFSN with 10 state-of-the-art track-
ers. The results are reported in Tab. 1. SiamFC and

SiamRPN are added into comparisons as our baselines. As
is shown in Fig. 9, our tracker is able to rank the 1st in EAO.
SiamFC is one of the top trackers on VOT2015 which can
run at frame rates beyond real time and achieves state-of-
the-art performance. SiamRPN is able to gain 23% increase
in EAO, and our AFSN can achieve 0.381 in EAO, which is
9.2% higher than SiamRPN. Also, AFSN is able to rank the
1st in accuracy, the 2nd in EFO and the 3rd in failure.

Figure 9. EAO scores rank on VOT2015

Table 1. Results about the state-of-the-art trackers in VOT2015.
Red, blue and green represent the 1st, 2nd and 3rd respectively.

Tracker EAO Accuracy Failure EFO
DeepSRDCF 0.3181 0.56 1.0 0.38

EBT 0.313 0.45 1.02 1.76
SRDCF 0.2877 0.55 1.18 1.99

LDP 0.2785 0.49 1.3 4.36
sPST 0.2767 0.54 1.42 1.01

SC-EBT 0.2548 0.54 1.72 0.8
NSAMF 0.2536 0.53 1.29 5.47
Struck 0.2458 0.46 1.5 2.44

RAJSSC 0.242 0.57 1.75 2.12
S3Tracker 0.2403 0.52 1.67 14.27
SiamFC-3s 0.2904 0.54 1.42 8.68
SiamRPN 0.349 0.58 0.93 23.0

AFSN 0.381 0.59 1.01 20.4

5.5. Results on VOT2016

The video sequences in VOT2016 are the same as
VOT2015, but the groundtruth bounding boxes are re-
annotated. We compare our trackers to the top 20 trackers in
the challenge. As shown in Fig. 10, AFSN can outperform
all entries in challenge. Tab. 2 shows the information of
several state-of-the-art trackers. AFSN can achieve a 12.4%
gain in EAO, 15.1% in accuracy compared with C-COT [8].
Our tracker also outperforms SiamRPN in EAO, accuracy
and failure. Most prominently, Our tracker operates at 136
FPS, which is 425× faster than C-COT.
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Figure 10. Expected overlap scores in the VOT2016 challenge.

Table 2. Results about the published state-of-the-art trackers in
VOT2016. Red, blue and green represent the 1st, 2nd and 3rd
respectively.

Tracker EAO Accuracy Failure EFO
C-COT 0.331 0.53 0.85 0.507

ECO-HC 0.322 0.53 1.08 15.13
Staple 0.2952 0.54 1.35 11.14
EBT 0.2913 0.47 0.9 3.011

MDNet 0.257 0.54 1.2 0.534
SiamRN 0.2766 0.55 1.37 5.44
SiamAN 0.2352 0.53 1.65 9.21

SiamRPN 0.3441 0.56 1.08 23.3
AFSN 0.372 0.61 1.04 20.6

5.6. Results on VOT2018

VOT2018 [20] dataset consists of 60 video sequences.
The performance is also evaluated in terms of accuracy (av-
erage overlap in the course of successful tracking) and ro-
bustness (failure rate). EAO is the combination of these
two measurements. Tab. 4 shows the comparison of our
approach with the top 10 trackers in the VOT2018 chal-
lenge. Among the top trackers, our AFSN achieves the best
EAO and accuracy, while having competitive robustness.
Although recently released SiamRPN++ [24] can achieve
0.414 in EAO, our AFSN can operate at 3.9× faster (136
FPS v.s.35 FPS) than SiamRPN++ with only a 4% drop in
EAO.

Figure 11. EAO scores rank on VOT2018

Table 3. Results about the published state-of-the-art trackers in
VOT2018. Red, blue and green represent the 1st, 2nd and 3rd
respectively.

Tracker EAO Accuracy Robustness
LADCF 0.389 0.503 0.159

MFT 0.385 0.505 0.140
DaSiamRPN 0.383 0.586 0.276

UPDT 0.378 0.536 0.184
RCO 0.376 0.507 0.155
DRT 0.356 0.519 0.201

DeepSTRCF 0.345 0.523 0.215
CPT 0.339 0.506 0.239

SASiamR 0.337 0.566 0.258
DLSTpp 0.325 0.543 0.224
AFSN 0.398 0.589 0.204

5.7. Results on TrackingNet

TrackingNet [30] is the first large-scale dataset and
benchmark for object tracking in the wild. It provides more
than 30K videos with more than 14 million dense bounding
box annotations sampled from YouTube. The dataset covers
a wide selection of object classes in broad and diverse con-
text. The trackers are evaluated using an online evaluation
server on a test set of 511 videos. The results of precision,
normalized precision and success are reported in Tab. 4.
MDNet achieves scores of 0.565 and UPDT achieves 0.611
in terms of precision and success, respectively. Our AFSN
ranks the 1st with relative gains of 7.4% and 7.2%.

Table 4. Comparison pn the TrackingNet test set with the state-of-
the-art trackers. Red, blue and green represent the 1st, 2nd and 3rd
respectively.

Tracker Precision Norm precision Success
UPDT 0.557 0.702 0.611
MDNet 0.565 0.705 0.606
CFNet 0.533 0.654 0.578

SiamFC 0.533 0.666 0.571
DaSiamRPN 0.413 0.602 0.568

ECO 0.492 0.618 0.554
CSRDCF 0.480 0.622 0.534

SAMF 0.477 0.598 0.504
Staple 0.470 0.603 0.528
AFSN 0.607 0.738 0.655

6. Conclusions
This paper presents the first in-depth study on anchor

free object tracking called Anchor Free Siamese Network
(AFSN). Unlike traditional Siamese trackers, the proposed
AFSN does not need to enumerate an exhaustive list of po-
tential object locations and classify each anchor. A target
object is characterized by a bounding box center, tracking
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offset and object size. All three are regressed by Siamese
network, performed one time per frame. We also opti-
mize Siamese network architecture for AFSN, and per-
form extensive ablation experiments to quantitatively il-
lustrate effectiveness of AFSN. We evaluate AFSN us-
ing five most commonly used benchmarks and compare
to the best anchor-based trackers with source codes avail-
able for each benchmark. AFSN is 3 × −425× faster than
these best anchor based trackers. AFSN is also 5.97% to
12.4% more accurate in terms of all metrics for benchmark
sets OTB2015, VOT2015, VOT2016, VOT2018 and Track-
ingNet, except that SiamRPN++ is 4% better than AFSN
in terms of Expected Average Overlap (EAO) on VOT2018
(but SiamRPN++ is 3.9× slower).
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