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ARTICLE INFO ABSTRACT
Keywords: The task of object tracking is very important since its various applications. However, most object tracking
Object tracking methods are based on visible images, which may fail when visible images are unreliable, for example when the

RGB-T fusion tracking
Dynamic Siamese networks
Deep learning

Image fusion

illumination conditions are poor. To address this issue, in this paper a fusion tracking method which combines
information from RGB and thermal infrared images (RGB-T) is presented based on the fact that infrared images
reveal thermal radiation of objects thus providing complementary features. Particularly, a fusion tracking
method based on dynamic Siamese networks with multi-layer fusion, termed as DSiamMFT, is proposed. Visible
and infrared images are firstly processed by two dynamic Siamese Networks, namely visible and infrared
network, respectively. Then, multi-layer feature fusion is performed to adaptively integrate multi-level deep
features between visible and infrared networks. Response maps produced from different fused layer features
are then combined through an elementwise fusion approach to produce the final response map, based on which
the target can be located. Extensive experiments on large datasets with various challenging scenarios have been
conducted. The results demonstrate that the proposed method shows very competitive performance against the-
state-of-art RGB-T trackers. The proposed approach also improves tracking performance significantly compared
to methods based on images of single modality.

1. Introduction (RGB-T) tracking [6] or fusion tracking [5,7]. Both deep learning
methods [8] and correlations filters [9] have been applied to fusion
Object tracking has received great attention in recent years due tracking, which significantly improve the performance of fusion track-

to its applications in various areas, such as entrance system, robotics,
and transportation management. Various trackers have been designed,
among which the most popular ones are based on deep learning [1] and
correlation filters (CF) [2]. Most of these tracking algorithms are devel-
oped for tracking based on visible images [3]. However, these trackers

ing compared to traditional methods [7,10]. However, the tracking
performance still needs to be improved. The major problem of current
methods is that they fail to strike a good balance between precision and
speed. Some trackers can run at a high speed, whereas the tracking

may fail when visible images are not reliable, for instance when the precisions are not good enough. Some trackers have good precisions
illuminations are poor. Contrarily, infrared images are insensitive to but they are very slow. For instance, Zhai et al. [11] proposed a CF-
these factors because they reveal thermal information of objects. based fusion tracking method whose frame rate was 224 FPS (frame

On one hand, infrared images can provide complementary benefits per second). However, its tracking precision was not good enough. Lan
with visible images and show objects when they are not clear in visible et al. [12] proposed a fusion tracking algorithm with high precision
images as shown in Fig. 1(a). On the other hand, RGB images are more but the speed was only 0.7 FPS, which was far from the real time

reliable than infrared images in some situations since they can provide
more details like color feature and texture information, as illustrated
in Fig. 1(b). Therefore, it would be helpful to fuse complementary
information from visible and infrared images in tracking.

In recent years, object tracking based on visible and infrared images
has become an active research topic, and is termed as RGB-Thermal tracking performance against the state-of-the-arts. In particular, an

requirement. It is difficult to apply these slow trackers in practical
applications.

In this study, we aim to bridge the above-mentioned gap by propos-
ing a fast fusion tracking method which can produce competitive
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(a) Target in infrared images is more
clear and distinguishable

(b) Target in visible images is more
clear and distinguishable

Fig. 1. Examples of complementary information in visible and infrared images [4,5].
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Fig. 2. Feature-level fusion tracking framework.

RGB-T tracker based on dynamic Siamese networks [13] is proposed
and is termed as DSiamMFT.
In summary, the main contributions of this paper are as follows:

* An RGB-T fusion tracking method based on dynamic Siamese
networks is proposed. To the best of our knowledge, this is
the first work that performs fusion tracking based on dynamic
Siamese networks.

Two dynamic Siamese networks are employed to process visible
and infrared images respectively, which can exploit multi-modal
information more effectively. The complementary features of vis-
ible and infrared images from multiple layers of the network are
fused to produce better results.

Extensive experiments have been conducted on large-scale visible
and infrared image datasets to verify the significance of the
proposed method in terms of tracking precision and speed.

The rest of the paper is organized as follows. Section 2 introduces
some related work and Section 3 discusses the proposed fusion tracking
algorithm. Then, experimental details and results are presented in
Sections 4 and 5, respectively. In Section 6 some discussions are given
and finally Section 7 concludes the paper.

2. Related work
2.1. Image fusion

Image fusion aims to fuse information from multiple images into
a more informative single image. A lot of algorithms have been pro-
posed, which can be generally divided into pixel-level, feature-level and
decision-level fusion methods. Image fusion methods mainly contain
weighted average method, wavelet-based, principal components anal-
ysis (PCA)-based, sparse representation-based and deep learning-based
methods.

After deep learning is introduced into the field of image fusion
recently, researchers have performed different image fusion tasks based
on deep learning [14], such as multi-focus image fusion [15], medi-
cal image fusion [16], visible and infrared image fusion [17], multi-
exposure image fusion [18]. Various deep learning methods, including
CNN [19], Generative Adversarial Networks (GAN) [20], Siamese net-
works [21], autoencoder [17] have been explored to conduct image
fusion.

2.2. RGB-T fusion tracking

Researches on fusion tracking based on visible and infrared images
began more than ten years ago. However, the research was limited
since the lack of large-scale datasets. The research of RGB-T tracking
was boosted until comprehensive RGB-T fusion tracking datasets are
available recently, such as RGBT210 [22]. In the past three years, an
increasing number of RGB-T tracking algorithms have been published
in high quality journals or well-known conferences [8,11,12,22-27].

Generally speaking, RGB-T fusion tracking algorithms can be di-
vided into five categories according to their adopted theories, namely
traditional methods, sparse representation (SR)-based, graph-based,
correlation filter-based and deep learning-based approaches. Among
these methods, deep learning-based ones are most popular in recent
years. This is mainly because that deep learning model can learn
effective features which are crucial in object tracking. For example,
Xu et al. [28] presented a method based on CNN. In that work, a
two-layer simple CNN was utilized to perform fusion tracking, and the
infrared channel was regarded as the fourth channel of the RGB image.
Li et al. [8] proposed a two-stream CNN for fusion tracking, which
utilized two CNNs to process visible and infrared images, respectively.

3. Methods
3.1. RGB-T fusion tracking via siamese networks

A typical feature-level fusion tracking framework is illustrated in
Fig. 2. Normally, a CNN is employed in the visible (VI) and another
CNN is used in the infrared (IR) network [8]. However, current methods
still have difficulties in making a balance between precision and speed.

Siamese networks have been widely applied to visual tracking since
2016 because of their simple structure, good performance and effi-
ciency [1,29-33]. However, Siamese networks have been rarely applied
in RGB-T fusion tracking so far. In this study, we propose employing
dynamic Siamese networks to perform RGB-T fusion tracking, aiming at
striking a good balance between precision and speed. In particular, two
fully-convolutional Siamese networks are employed to process visible
and infrared images, respectively. Therefore, the similarity function
can be computed for all translated sub-windows within the search
image in one evaluation, which leads to relatively high tracking speed.
Besides, due to the strong feature representation ability of CNN, the
learned background suppression transformation and target appearance
variation transformation, as well as the multi-layer feature fusion, the
proposed method obtains good tracking performance.
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3.2. Network architecture of the RGB-T tracker based on dynamic siamese s ,
networks To = W25 0'(z,), (C))

In this study, the DSiam proposed by Guo et al. [13] is utilized
as the backbone of the proposed fusion tracking framework due to its
good performance in both tracking precision and speed. However, it
should be mentioned that the principle of the proposed framework is
generic, thus other Siamese network-based tracking methods can also
be employed.

The flowchart of fusion tracking based on dynamic Siamese net-
works (DSiamFT) is illustrated in Fig. 3. Basically, two dynamic Siamese
networks are utilized in DSiamFT, namely the visible network and
infrared network. Since each Siamese network has two branches, thus
in our network there are four branches in total. In each network,
the target image (in this study, the first frame containing target is
chosen) and current frame images are cropped into template image and
search images respectively. Both the template and search images are
centered at the tracking target object, and their size are 127 x 127 x 3
and 255 x 255 x 3, respectively. If the target is very close to the
boundary, then one needs to fill in the image using mean pixel value
after cropping. Then, the template and search image are fed into two
branches of a Siamese network to produce corresponding features.

Compared to SiamFC [1], the dynamic Siamese networks are
equipped with two online-learned transformations, namely the target
appearance variation transformation (denoted as V) and the back-
ground suppression transformation (denoted as W) [13]. Denote the
CNN in visible network as ¢, the CNN in infrared network as ¢’, current
frame visible search image as x,, the first frame visible search image as
x, 1, visible template image as z,;, current frame infrared search image
as x,, the first frame infrared search image as x,;, infrared template
image as z,, then the transformed features are:

[2 = Vlxo(x,), €8]
[l =Wlxo(z,)), (@)

[l =V2x 9 (x), 3

Xi

where f3 . f3 . f3,. f3, are transformed visible search feature, trans-
formed visible template feature, transformed infrared search feature
and transformed infrared template feature, respectively. = denotes cir-
cular convolution that can be efficiently solved in frequency domain.
The superscript 5 indicates the 5th layer. The CNN in each Siamese
network has 5 layers, thus the 5th layer is the last layer. V1 and V2 de-
note the appearance variation transform in visible and infrared images,
respectively. W1 and W2 are the background suppression transform,
respectively.

Both transformations V and W are learned online [13]. To be more
specific, regularized linear regression (RLR) is used to calculate V and
W [13]. Here we discuss the transformation learning using the visible
Siamese network as example. The same idea also applies to the infrared
Siamese network.

The appearance variation transformation V1 is used to update the
deep features of target template z, ;. It aims to encourage the f3(z, )
being similar to f3(z,;_;), thus it is learned from the 1st frame and
(i—1)th frame by considering temporally smooth variation of the target.
Specifically, after obtaining the tracking result at the (i—1)th frame, we
have the target z;_,. It is assumed that the target variation is temporally
smooth. Then, we get the target appearance variation transformation
V1 by

V1=argmin |[V1+ p(z,,) - @z DI + 4,V 5

where 4, controls the regularization degree. Thanks to the desirable
property of circular convolution = [34], from Eq. (5) we can efficiently
obtain V1 by

F*(@(z,)) © F(p(z,,_1))
F*((2,1) © F(@(z, 1) + 4,

Vi=g7K (6)
where # is the discrete Fourier transformation (DFT), %! is the in-
verse DFT, % indicates complex-conjugate, ® denotes the elementwise
multiplication.
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The background variation transformation W1 is utilized to update
the deep features of search image x, ;. It aims to highlight the deep
feature of target neighborhood regions and alleviate the interference of
irrelevant background features. It is learned based on the (i—1)th frame
and its Gaussian version. After tracking at the (i — 1)th frame, we have
the target location and can crop the image to region g,; ; centering at
the target location and with the same size of the template image z, ;.
Then we multiply g,; ; with a Gaussian weight map to get g,;_| to
properly highlight the target regions. We can then get the background
variation transformation W1 by

W1 = argmin [W1 * ¢(g,-1) - 0o DI* + A, W2, %)

where 4, is the parameter which controls the regularization degree.
Similarly, we can efficiently have

F*(@(gpi-1) © F(9(Zpi-1))
FH*(@(8,,1) © F(@(gpi1) + Ay

The target variation and background suppression transformations V1
and W1 enables the original Siamese network [1] with proper online
adaptation ability. The corresponding transformations V2 and W2 for
the infrared Siamese network can be learned similarly. More details
about the computation of these transformations can be found in [13].

The transformed visible template feature and transformed infrared
template feature are fused to produce the fused template feature. Sim-
ilarly, the transformed visible search feature and transformed infrared
search feature are fused to obtain fused search feature. The next step is
to compute the cross-correlation between these two fused features. By
doing so one can obtain the response map which reflects the position
of target. The response map of the fusion tracking method proposed in
this study is:

W1=%"Y (8)

S’ = (fzsvr ® fzsn) ® (fjw @ fzsvt)’ C)

where @ indicates feature fusion, ® indicates the correlation operation
on two fused feature tensors. Also, feature fusion is achieved through
concatenation as a proof of concept. Finally, the position of the target
in current frame can be obtained by upsampling the response map. The
algorithm of DSiamFT is illustrated in Algorithm 1.

Algorithm 1: DSiamFT

1 Input: Registered visible and infrared images, groundtruth of the 1st
frame

2 Output: Predicted position and size of object in each frame

3 Initialization:

4 Crop the visible target image to obtain visible template image z,;

5 Crop the infrared target image to obtain infrared template image z,

6 Tracking:

7 for each frame i do

8 Crop current frame images to obtain x, and x,

9 Compute V1 using z,; and z,; ,

10 Compute V2 using z,, and z,;_,

1 Compute W1 using x,;_,

12 Compute W2 using x,;_;

13 Feed z, and x, into the visible network to obtain f3 and 3,

14 Feed z, and x, into the infrared network to obtain /3, and f3,

15 Fuse f3 and f3 to obtain fused search feature f> @ f3

16 Fuse f3 and f2, to obtain fused template feature f> @ f3,

17 Compute the response map $° according to Eq. (9)

18 Upsample the response map to obtain the predicted position of
target

19 end

Note that due to the different characteristics of visible and infrared
images, the network which can effectively process them and extract
features should be different. As a consequence, the CNNs in visible
network and infrared network should be different. However, in this
work our aim is to demonstrate the principle of the proposed method,
thus we use the same CNN in both VI and IR network. The CNN is
pretrained using ImageNet [35] provided by Bertinetto et al. [1].

Signal Processing: Image Communication 84 (2020) 115756

Table 1
Attribute information of RGBT210 dataset [22].
Attribute Description Attribute Description
NO No occlusion DEF Deformation
PO Partial occlusion FM Fast motion
HO Heavy occlusion sV Scale variation
LI Low illumination MB Motion blur
LR Low resolution CM Camera moving
TC Thermal crossover BC Background clutter

3.3. RGB-T tracker based on dynamic siamese networks with multi-layer

fusion

In DSiamFT, only features of the last layer are utilized. Actually, one
could fuse multi-layer features to obtain better results. In this study,
we propose a method to utilize multi-layer features in fusion tracking
via dynamic Siamese networks, which is then termed as DSiamMFT.
The flowchart of DSiamMFT is shown in Fig. 4. In DSiamMFT, features
from 4th and 5th layers are utilized. Note that the target appearance
variation (denoted as V1’ and V2') and background suppression trans-
formation (denoted as W1’ and W2') are also applied to corresponding
branches in both VI and IR network.

Then, the transformed feature from the 4th layer of visible network
is fused with the transformed feature from the 4th layer of infrared
network, to produce the fused template feature f* & f# and fused
search feature f! @ f* . Here, the superscript 4 indicates the 4th
layer. Cross-correlation is then computed for these two fused features
to produce a response map S*. Response maps S* and S° are then fused

using an elementwise weight map Q' (I indicates the layer), yields
S=Q'08*'+206S. (10)

Note that the weight map is learned automatically during the training
of the network. For more details about this weight map, please refer
to [13].

The algorithm of DSiamMFT is given in Algorithm 2.
Algorithm 2: DSiamMFT

-

Input: Registered visible and infrared images, groundtruth of the 1st

frame

2 Output: Predicted position and size of object in each frame

3 Initialization:

4 Crop the visible target image to obtain visible template image z,,,

5 Crop the infrared target image to obtain infrared template image z,;

6 Tracking:

7 for each frame i do

8 Crop current frame images to obtain x, and x,

9 Compute V1 using z,; and z,; ,

10 Compute V2 using z,; and z,;_,

1 Compute W1 using x,,;_,

12 Compute W2 using x,,_;

13 Compute V1', V2, W1', W2’ accordingly

14 Feed z, and x, into the visible network to obtain f2 , f2 , /3 , f3

15 Feed z, and x, into the infrared network to obtain f?, /2, /3., f3,

16 Fuse f> and f3, to obtain fused template feature /3 @ f3,

17 Fuse f3 and f3, to obtain fused search feature f3 & f3,

18 Compute the response map S° according to Eq. (9)

19 Fuse f and f* to obtain fused search feature f* @ [

20 Fuse f? and f2 to obtain fused template feature f2 @ f2,

21 Compute the response map st

22 Computing the weighted-summed response map S according to
Eq. (10)

23 Upsample the response map to obtain the predicted position of
target

24 end
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Fig. 4. Flowchart of the proposed fusion tracking method based on dynamic Siamese networks using multi-layer features.

4. Experiments

To test the performance of the proposed method, a lot of experi-
ments are conducted. All experiments in this study are conducted using
a PC with a NVIDIA GTX 1080Ti GPU and i7-8700K CPU.

4.1. Implementation details

In this work, the pretrained network provided by Guo et al. [13] is
utilized in both the visible network and infrared network. The network
is trained using the ImageNet dataset, which consists a large number of
visible images. The main reason why we do not train both the visible
and infrared networks together is that there is a lack of large-scale
registered visible-infrared image pair datasets. However, although it
seems a little counter-intuitive to use features trained on RGB images
for thermal images, some studies have shown that the network trained
using RGB images can also handle infrared images because the RGB
and infrared images have something in common [36,37]. Therefore,
in this study, we utilize the network provided by Guo et al. [13] as
the infrared network. Besides, this study mainly aims to demonstrate
the effectiveness of the dynamic Siamese networks in RGB-T fusion
tracking. Therefore, we leave the training of infrared networks in our
future work. We expect that by training or fine-tuning the infrared
network with a large number of infrared images, the performance of
the proposed RGB-T tracker could be further improved.

4.2. Datasets
In this study, a recently released large-scale RGBT dataset, namely

RGBT210 is employed [22]. It contains 210 aligned visible and infrared
videos. Different attributes of videos are also annotated for RGBT210 as

shown in Table 1. In addition, as performed in [12,24], sixteen visible
and infrared video pairs covering various challenges are also collected
to evaluate the performance of the proposed method. The name and
corresponding attributes of these sequences are listed in Table 2'.

4.3. Evaluation metrics

In this study, we utilize success plot and precision plot to evaluate
fusion tracking performance. Success means that the overlapping be-
tween the predicted bounding box and groundtruth box is larger than
a threshold, where the overlapping is defined as:

la( 5]
laUol’

where a and b indicates the predicted bounding box and groundtruth,

O(a,b) = an

respectively. The success plot shows the trends of success rate when the
threshold changes from O to 1. The area under curve (AUC) is employed
to rank different methods effectively.

Precision means that the center location error (CLE) between the
predicted bounding box and the groundtruth is smaller than a chosen
threshold. The precision plot shows the trends when the threshold
changes from small to large. The threshold is set to 20 pixels in this
work for RGBT210. For another sixteen videos, because targets are
relative small, thus the threshold is chosen as 5 pixels.

1 SO means small object, LSV means large scale variation. Others are the
same with the definition in RGBT210.
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Table 2
Sequence name and attributes used in this work.
Name Attribute Name Attribute
BlackCar OCC, LSV, FM, LI OccCar-1 OCC, LSV, TC, SO
Cycling LSV, LI, DEF Otvbus LR, DEF, SO
DarkNig LI, TC, DEF RainyCarl OCC, LSV, LI, TC, LR, SO
Exposure4 OCC, LSV, TG, LR, SO RainyCar2 OCC, LSV, FM, LI, TC, LR, SO
FastMotor OCC, LSV, TC, LR, SO Torabi OCC, DEF
FastMotorNig OCC, LSV, LI, TC, LR, SO Tricycle OCC
GarageHover LI, DEF tunnel LI, DEF
Minibus LSV, LI WalkingNig OCC, LSV, 1I, TC, LR, DEF, SO

Table 3
Success rate (SR %) on the RGBT210 dataset. The best three results are shown in red, green and blue, respectively. Best viewed in color.

CSR [25] JSR [7] MEEM+RGBT [38] KCF+RGBT [2] CFNet+RGBT [29] Zhai et al. [11] Li et al. [26] SGT [22] LGMG [27] Ours

NO 45.2 27.3 41.2 36.3 52.2 46.9 59.4 50.7 56.9
PO 36.6 23.7 35.5 31.6 38.5 41.5 48.3 52.5 46.2
HO 24.3 16.5 24.2 22.2 27.3 27.0 34.6 34.1 35.9

LI 31.1 24.1 25.6 30.4 33.6 36.8 46.4 44.7 43.3
LR 23.1 15.4 23.4 26.2 27.7 33.9 37.5 35.8 31.3
TC 29.3 16.6 35.6 24.1 29.4 30.1 43.0 40.7 38.3

DEF 33.0 20.8 33.5 29.5 35.2 37.9 45.9 45.1 43.7
FM 25.0 11.9 26.8 19.1 23.0 24.9 33.1 32.5 36.7
sV 37.5 22.8 33.0 27.5 40.6 37.1 41.7 50.2 46.7
MB 23.8 149 31.4 20.7 22.4 25.2 39.6 42.4 38.1
CM 27.4 19.8 31.9 26.0 27.9 31.4 41.8 40.7 43.2
BC 23.7 16.9 23.4 25.6 28.1 31.7 35.5 35.2 35.0
ALL 33.0 21.3 31.9 28.5 36.0 36.6 43.0 46.8 43.6

Table 4

Success rate (SR %) on 16 sequence pairs. The best three results are shown in red, green and blue, respectively. Best viewed in color.
CN [39] JSR [7] CSK [40] CT [41] L1 [42] MIL [43] RPT [44] STC [45] STRUCK [46] TLD [47] SGT [22] LGMG [27] Ours

BlackCar 27.1 25.5 23.2 25.0 67.8 24.1 36.9 35.0 26.7 52.8 26.9 53.3
Cycling 61.5 50.6 59.9 55.7 36.3 62.9 58.3 46.4 61.1 60.4 60.9 65.3
DarkNig 80.6 65.0 77.9 67.9 74.1 78.1 65.2 69.5 56.6 77.6 77.1 63.3
Exposure4 55.0 56.1 19.3 44.3 49.2 28.0 65.6 34.4 56.2 23.3 64.0 77.1
FastMotor 46.6 40.1 47.7 46.5 2.0 47.0 48.8 26.8 47.6 1.0 42.9 62.2
FastMotorNig  37.0 51.4 36.2 51.1 9.8 64.9 43.5 63.7 54.1 47.1 57.7 56.7
GarageHover 66.1 49.9 72.9 67.0 10.8 43.2 75.2 55.9 61.1 38.1 67.1 69.2

Minibus 42.1 41.7 41.9 42.1 37.8 34.3 43.9 46.6 43.2 42.2 45.8 76.6
OccCar-1 48.3 7.1 48.1 48.7 80.4 41.7 72.0 48.0 47.9 73.6 48.7 74.0
Otvbvs 54.0 8.8 2.3 77.3 7.8 53.0 31.0 70.8 9.7 65.8 58.8 71.1
RainyCarl 58.8 5.2 59.4 59.7 7.8 7.0 71.7 48.3 61.3 56.3 62.5 62.0
RainyCar2 56.3 52.4 39.5 39.5 56.4 45.1 59.1 47.3 56.7 47.1 55.8 75.8
Torabi 4.6 4.5 55.6 5.9 39.6 4.2 63.7 4.3 10.2 62.7 57.1 65.4
Tricycle 68.4 67.7 68.4 61.5 68.1 69.4 73.5 65.6 68.1 59.7 73.2 72.4
tunnel 81.6 31.8 74.4 61.6 57.8 76.1 60.0 73.3 68.0 77.3 74.1 75.7
WalkingNig 43.8 63.6 16.6 50.7 20.6 52.9 61.4 56.7 16.3 61.4 60.7 52.6
ALL 53.2 41.3 44.2 51.2 40.9 45.8 57.1 50.0 53.7 42.1 59.0 67.2

Table 5

Precision rate (PR %) on 16 sequence pairs. The best three results are shown in red, green and blue, respectively. Best viewed in color.
CN [39] JSR [7] CSK [40] CT [41] L1 [42] MIL [43] RPT [44] STC [45] STRUCK [46] TLD [47] SGT [22] LGMG [27] Ours

BlackCar 16.5 11.3 7.0 3.5 80.9 3.5 12.2 10.4 14.8 46.1 14.8 28.7

Cycling 82.5 41.9 72.5 27.5 45.6 58.8 99.4 48.1 61.9 79.4 85.0 39.4
DarkNig 100 68.5 99.1 59.5 98.2 79.3 100 100 56.8 87.4 87.4 98.2 38.7
Exposure4 75.5 86.4 26.5 48.3 72.1 39.5 98.6 53.1 81.6 25.2 88.4 95.2
FastMotor 40.0 18.0 100 90.0 2.0 77.0 76.0 19.0 47.0 1.0 100 100 100
FastMotorNig  30.8 60.0 44.6 64.6 13.8 90.8 58.5 100 69.2 64.2 96.9 100 83.1
GarageHover  88.0 44.6 98.8 59.4 13.1 11.2 100 58.2 72.9 21.1 96.0 94.4

Minibus 54.7 20.5 62.1 17.9 68.4 18.9 65.3 79.5 78.4 47.4 100 100 100
OccCar-1 95.9 7.6 83.6 79.5 98.2 16.4 98.2 91.8 42.7 86.5 100
Otvbvs 54.1 10.5 2.6 98.3 10.0 94.9 37.9 13.7 99.1 13.4 100 97.2 100
RainyCarl 100 5.0 100 96.7 8.3 8.3 96.7 5.0 100 85.0 100 98.3 96.7
RainyCar2 76.8 68.0 49.6 43.2 74.4 40.8 75.2 74.4 73.6 50.4 74.4 96.0
Torabi 1.7 1.7 7.5 2.5 2.9 1.7 40.8 1.7 2.9 10.0 11.3 19.9
Tricycle 95.4 97.7 98.5 79.2 73.1 95.4 100 75.4 100 89.2 99.2 99.2 100
tunnel 100 20.0 89.0 12.0 100 50.0 95.0. 60.5 98.0 42.5 98.5 98.0 98.5
WalkingNig 100 46.7 81.4 18.6 100 25.7 97.6 100 95.8 15.6 97.1 96.4 88.0
ALL 69.5 39.9 61.4 50.3 53.8 46.4 73.2 61.3 67.5 46.3 86.6 82.0
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Fig. 5. The results comparison of DSiamM, DSiamM_IR and DSiamMFT on sixteen sequence pairs.

5. Results
5.1. Evaluation on RGBT210 dataset

The comparison of tracking performance between DSiamMFT and
several state-of-the-art tracking algorithms, including CSR [25],
JSR [71, KCF [2], CFNet [29], SGT [22], LGMG [27], MEEM [38], the
method proposed by Zhai et al. [11] and the method of Li et al. [26], on
RGBT210 dataset is given in Table 3. The table shows that DSiamMFT
obtains very competitive results with the state-of-the-arts, ranking the
third in terms of SR. In particular, DSiamMFT outperforms the famous
KCF over 15.1% and the correlation filter-based fusion trackers recently
proposed by Zhai et al. [11] over 7.7% in SR, respectively. Besides,
although DSiamMFT performs slightly worse than the method proposed
by Li et al. [26] and LGMG, it beats all trackers in several challenging
scenarios, namely fast motion and camera moving. DSiamMFT also
ranks the second in handling heavy occlusion and thermal crossover.
This clearly demonstrate that the proposed DSiamMFT can effectively
handle these adverse challenging conditions during tracking by leverag-
ing complementary multi-modal information. Besides, as will be discuss
later, the proposed DSiamMFT runs much faster (14.7 FPS) than the
method of Li et al. [26] (8 FPS) and LGMG (7 FPS), thus striking a
better balance between tracking precision and speed.

5.2. Evaluation on 16 sequences

The performance of DSiamMFT on sixteen sequences are compared
with several state-of-the-art trackers, including SGT [22], LGMG [27],
CN [39], JSR [71, CSK [40], CT [41], L1 [42], MIL [43], RPT [44],
STC [45], STRUCK [46], TLD [47]. The results are shown in Table 4
and Table 5. As can be seen, the proposed DSiamMFT achieves the
best result in SR and the third best result in PR, demonstrating the
effectiveness of DSiamMFT in RGB-T fusion tracking. In particular,
DSiamMFT outperforms all other compared trackers in 7 sequences in
terms of SR and in 6 sequences in terms of PR. These sequences cover
all annotated attributes namely OCC, LSV, LI, TC, LR, DEF, SO. This
further shows that the proposed DSiamMFT is effective in handling
various challenging scenarios during tracking.

5.3. Ablation study

There are several important components in the proposed method,
namely the feature-level fusion, the multi-modal images and the multi-
layer fusion. To investigate the contribution of each component to the
tracking results, a series of ablation studies have been performed.

Table 6

Image fusion methods employed in this study.

Name Description Method denotation
Fused 1 Average DSiamM_Average
Fused 2 TGB DSiamM _TGB
Fused 3 RTB DSiamM_RTB
Fused 4 RGT DSiamM_RGT
Fused 5 ADF DSiamM _ADF

5.3.1. Contribution of feature-level fusion

To demonstrate the contribution of feature-level fusion utilized
in this work, we compare the results of the proposed method with
baselines which simply perform early fusion of two modalities as input
to a single dynamic Siamese network [13]. Similar to the work of Zhang
et al. [48], we chose five image fusion methods to firstly produce five
fused version of RGBT210 dataset. Then, we input the fused image to
DSiamM [13] to obtain tracking results. The five fusion methods are
chosen as listed in Table 6. In the first method, we simply compute the
average between visible and infrared images as

I;=05x1,+05x1, 12)

where I, denotes fused images, I, and I; are the visible and infrared
images, respectively. From Fused 2 to Fused 4 methods, we replace
one channel in visible images using the corresponding infrared image,
resulting in TGB, RTB and RGT images. The fifth method is called
ADF [49]. Default settings proposed by the corresponding authors are
chosen.

The results comparison of the proposed method with those early
fusion methods is presented in Table 7. It can be seen that the proposed
DSiamMFT obtains the best performance in terms of both PR and
SR than its early fusion counterparts. This clearly demonstrate the
superiority of the proposed DSiamMFT.

Table 7 shows that the speed of DSiamMFFT is much slower than
those pixel-level fusion tracking algorithms. However, it should be
mentioned that, the speed listed in Table 7 is the speed of running
DSiamM on each fused dataset which does not contain the time of
performing image fusion. Actually, the first four pixel-level fusion
methods are quick, while the ADF method is relatively time-consuming.
It takes around 0.66 s to fuse one visible and infrared image pair [49].
Indeed, if we do both image fusion and tracking online, the image
fusion speed will significantly affect the whole fusion tracking speed.
If an image fusion algorithm is very slow, for instance it takes about
80 s to fuse one image pair using the latent low-rank representation
(LatLRR) [50], then it will not be feasible to obtain a real-time fusion
tracking approach.
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Fig. 6. The results comparison on RGBT210. The title of each plot is the attribute name and corresponding sequences number.
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Fig. 7. The results comparison of DSiamFT and DSiamMFT on sixteen sequence pairs.

Table 7

Comparison of results (PR %, SR% and FPS) between the proposed method and early fusion algorithms. The best three results are shown in
red, green and blue, respectively. Best viewed in color.

Att DSiamM _Average DSiamM_TGB DSiamM_RTB DSiamM_RGT DSiamM_ADF DSiamMFT
PR 55.4 55.3 52.2 58.6 56.2 64.2
SR 38.2 37.6 34.2 40.9 38.1 43.6
Speed 33.9 31.0 30.5 30.3 33.2 14.7
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Fig. 8. Qualitative comparison between DSiamMFT, DSiamM and DSiamM_IR. From top to bottom are sequences: Cycling, OccCar-1, otvbys, GarageHover, tunnel. In Cycling and

OccCar-1, DSiamM_IR cannot track the target well. In otvbys and GarageHover, DSiamM loses the target. In tunnel, both DSiamM and DSiamM_IR fail. In all these sequences, the
proposed DSiamMFT can track the target successfully.



X. Zhang, P. Ye, S. Peng et al.

Table 8
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Comparison of running time (FPS) between the proposed method and other reported RGB-T trackers. The best three results are shown in red, green and blue,

respectively. Best viewed in color.

RPT [44] Struck [46] CSR [25] SGT [22]

Li et al. [26]

Zhai et al. [11] LGMG [27] DSiamFT DSiamMFT

2.6 10.8 1.6 5 8

227 7 14.7

5.3.2. Contribution of multi-modal images

To demonstrate the contribution of multi-modal information fusion
during tracking, we have run tracking with single modality images.
We firstly run the tracker on sixteen sequences with only visible im-
ages and only infrared sequences, and term them as DSiamM and
DSiamM_IR, respectively. The comparison of results between DSiamM,
DSiamM_IR and DSiamMFT on these sequences is shown in Fig. 5. It
can be observed clearly that DSiamMFT outperforms both DSiamM and
DSiamM_IR with a very clear margin, which means that by using multi-
modal information, the tracking performances have been improved
significantly.

We then run DSiamM and DSiamM_IR on RGBT210 dataset, and
the results are shown in Fig. 6. As can be seen, in all these cases
DSiamMFT outperforms both DSiamM and DSiamM_IR with a very
clear margin, indicating that by utilizing complementary information
from visible and infrared images, the tracking performance can be
improved greatly in various adverse challenging situations. Besides, in
all presented attributes except for low illumination and low resolution,
DSiamM outperforms DSiamM_IR. This indicates that tracking based on
visible images may not work well when illumination condition is poor
and when the resolution of images is low. Thus, visible and infrared
images indeed contribute complementary features in fusion tracking.

5.3.3. Contribution of multi-layer fusion

To investigate the effectiveness of multi-layer fusion in the tracking
process, we compare the performance of DSiamFT and DSiamMFT. The
comparison of PR and SR on sixteen sequences are given in Fig. 7. As
can be seen, after removing the multi-layer fusion in the fusion tracking
process, the tracking precision degrades. This clearly demonstrates that
the multi-layer fusion contributes to the performance of DSiamMFT.

5.4. Qualitative tracking results

To further illustrate the performance of the proposed multi-modal
fusion tracking algorithm, some qualitative tracking results are pre-
sented in Fig. 8. Both visible and infrared images of five sequences
are shown for better visualization. In sequence Cycling and OccCar-
1, both DSiamM and DSiamMFT track the target successfully, while
DSiamM_IR fail. The possible reasons are the thermal crossover and
low resolution of infrared images. In contrast, in sequence otvbvs and
GarageHover, DSiamMFT and DSiamM_IR track the object well, while
DSiamM loses the target. In otvbys, the black pillar is distraction to
the man in black cloth, thus DSiamM shifts to the pillar and fails.
In this case, the infrared image reveal different thermal information
between the man and the pillar, thus DSiamM_IR can track successfully.
In GarageHover, the illumination condition around the target is very
poor thus DSiamM is not able to track it. In the sequence tunnel, again
the illumination condition around the target is poor. Besides, another
person which has similar thermal information with the target appears
and is a distraction to DSiamM_IR. Therefore, in this case both DSiamM
and DSiamM_IR fail.

In all these five sequences, DSiamMFT tracks the target success-
fully, demonstrating that DSiamMFT is able to handle challenging
scenarios such as poor illumination, background clutter and thermal
crossover. Furthermore, the results on sequence tunnel demonstrate that
the proposed DSiamMFT can even work in some cases where both
DSiamM and DSiamM_IR fail. This clearly shows the benefits of fusing
complementary features from visible and infrared images in tracking.
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5.5. Runtime performance

The comparison of runtime between the proposed fusion tracking
method with several state-of-the-arts trackers is given in Table 8. As
can be seen, DSiamFT can run almost in real time with a framerate
of 17 FPS. DSiamMFT is slightly slower but is still faster than all
trackers except for the tracker proposed by Zhai et al. [11] which is
based on correlation filter. However, Table 3 indicates that DSiamMFT
outperforms their tracker on RGBT210 datasets with a clear margin
in terms of both precision rate and success rate. In addition, although
SGT [22] and the methods proposed by Li et al. [26] obtain competitive
or slightly better results compared with DSiamMFT in terms of PR and
SR, these trackers are very slow and their frame rate are only 5 FPS and
8 FPS, respectively. This means that they are not suitable to be used
in practical real-time applications. Therefore, the proposed DSiamMFT
strikes a better balance between tracking precision and speed than these
compared trackers.

6. Discussion

Improvements in almost all attribute-based performance. The
original purpose of combining infrared images in tracking is to improve
performance when visible images are unreliable. For example, when
light conditions are poor. However, experimental results are supervis-
ing, since the fusion tracking performance of almost all attributes on
RGBT210 have been improved compared to those of visible images.
This indicates clearly that infrared images are very beneficial in object
tracking. We believe that this is because infrared images can provide
thermal features which are more robust in some challenging situations,
and the proposed fusion tracking method can effectively make use of
complementary features from both modalities.

Infrared-specific network. In this work, the network pretrained
with ImageNet are utilized directly without finetuning as a proof of
concept. Note that the ImageNet dataset does not contain infrared im-
ages. Despite these factors, the proposed DSiamMFT still achieves very
competitive results again the start-of-the-arts. This clearly demonstrate
the strength of the proposed method. We believe that by fine-tuning
the infrared network with infrared images, or by training an infrared
network from scratch using infrared images may further improve the
performance of DSiamMFT.

7. Conclusion

In this paper, a fusion tracking method based on visible and infrared
thermal images (RGB-T) via dynamic Siamese Networks with multi-
layer fusion, termed as DSiamMFT, is proposed. To the best of our
knowledge, this is the first time that the dynamic Siamese network is
leveraged to perform RGB-T fusion tracking. Specifically, two dynamic
Siamese networks, namely visible network and infrared network, are
employed to process visible and infrared images, respectively. Features
of the last layer in visible network are fused with those in infrared net-
work. Similarly, features of the last second layer in visible network are
fused with those in infrared network. Response maps produced through
cross-correlation using different fused layer features are integrated to
produce the final response map which can be used to predict target
location. Extensive experiments have been conducted, which clearly in-
dicate that the proposed DSiamMFT can improve tracking performance
significantly compared to tracking with single-modal images. Also, the
proposed network architecture is simple yet effective, thus it can run
at a faster speed than most RGB-T trackers while achieving competitive
performance against the state-of-the-arts although without fine-tuning.
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