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Abstract. In the field of structural health monitoring (SHM), cameras record videos and tracking meth-
ods can be applied to calculate the structural displacement. Commercial and unmanned aerial vehicle
(UAV) cameras are promising non-contact sensors owning to their high availability and easy installation.
However, effective tracking methods need to be developed. In this study, we firstly propose an end to
end vision measuring framework with a novel deep neural network (DNN) tracker, named Siamese Single
Decoder Network (SiamSDN). The system requires no target installation and uses cellphone cameras. For
SiamSDN, the position and scale of bounding box are formulated through statistical parameter estimation.
Unlike generative trackers, SiamSDN does not require manually extracted features or pre-defined motion
areas. The tracking object is solely identified in the first frame. A shaking table test of a five-storey
structure is carried out to demonstrate the efficiency. Besides, a UAV is used to simulate the field test.
To minimize the error caused by the vibrations of UAV, digital video stabilization (DVS) is proposed
to eliminate the drifts. Videos taken by both the commercial and UAV cameras are analyzed to calcu-
late the displacements. Comparing our DNN tracker with feature point matching approach, SiamSDN
improves the displacement measuring accuracy by 66.16% and 57.54%, respectively, and the frequency
characteristics are obtained precisely.

Keywords: structural health monitoring; commercial camera; unmanned aerial vehicle; siamese net-
work; frequency characteristics

1. Introduction

The structural health monitoring (SHM) of civil infrastructures mainly aims to monitor the struc-
tural condition, detect the structural abnormality, and evaluate the structural safety based on the long-
termmonitoring data from a variety of sensors installed on the structures (Ye et al. 2019). As amethod

*Corresponding author, Professor, E-mail: yingzhou@tongji.edu.cn
aB.S., E-mail: 1553983@tongji.edu.cn
bM.S., E-mail: carlyan@tongji.edu.cn
cProfessor, E-mail: hebin@tongji.edu.cn

Copyright © 2020 Techno-Press. Ltd.
http://www.techno-press.org/?journal=sem&subpage=8 ISSN: 1225-4568(Print), 1598-6217(Online)

http://dx.doi.org/https://doi.org/10.12989/sss.2021.27.5.803
yingzhou@tongji.edu.cn
1553983@tongji.edu.cn
carlyan@tongji.edu.cn
hebin@tongji.edu.cn
http://www.techno-press.org/?journal=sem&subpage=8


2 Shengyun Peng, Lingfeng Yan, Bin He and Ying Zhou

of engineering structure evaluation, SHM has gradually become an important research area in civil
engineering. In the SHM community, realizing the autonomous, accurate and robust data processing
systems has been a great concern (Ye et al. 2019, Spencer et al. 2019).

Structural displacement responses to a variety of external loads are fundamental for structure
status estimation and health monitoring. The displacement measurement systems can be divided into
two types: contact and non-contact systems. The contact systems generally includes high precision
transducers, like LVDT and cable type. These systems require a stationary reference point to measure
the relative displacement between the structure and the fixed point (Ribeiro et al. 2014). Meanwhile,
it is difficult and almost impossible to install the measuring system on structures, which are super
high-rises or are located over a watercourse (Feng et al. 2015).

The non-contact systems generally encompass laser, radar, GPS and camera systems. The mea-
surement of the laser technique is very accurate, but the high intensity laser beam is detrimental to
human health and the cost of the whole system is too high for regular SHM (Nassif et al. 2005). Sys-
tem that uses GPS technology can measure the displacement within 0.2 mm, but it requires a local
station and the frequency is normally below 20 Hz (Jo et al. 2013).

Vision-based measuring methods have established a good compromise between the acquisition
frame rate and the resolution (Mas et al. 2011). With the advent of artificial intelligence, more atten-
tion has been paid to explore the applications of deep learning-based image processing methods in
the field of SHM (Spencer et al. 2019, Lee et al. 2017, Narazaki et al. 2019). This technique has the
advantages of non-contact, non-destructive, long distance and immunity to electromagnetic interfer-
ence (Ye et al. 2016). Liu et al. (2019) proposed a machine learning method to measure the vibration
frequency. The method was based on long short-term memory-recurrent neural networks (LSTM-
RNN) and multi-target learning. A new model based on convolutional neural network (CNN) was
established for SHM of tall buildings subject to wind loads (Oh et al. 2019). Zhang et al. (2019) de-
veloped a simple one-dimensional CNN that detected tiny local structural stiffness and mass changes.
The proposed framework was validated on T-shaped steel beam. Wahbeh et al. (2003) combined a
highly accurate camera with a laser tracking reference to develop, calibrate, implement and evaluate
the feasibility of obtaining the absolute displacement time history on a field test bridge. Busca et al.
(2014) proposed and used two different types of cameras to monitor the responses of bridges as trains
passed across them. Three different image processing techniques (pattern matching, edge detection,
and digital image correlation) were applied to analyze the images. Results were compared to those
obtained by a single-point laser interferometer. By comparing two types of non-contact measurement,
Kohut et al. (2013) calculated displacement fields of structures with digital image correlation coeffi-
cients and measured the deflection of structures by using a radar interferometer. Dong et al. (2019)
proposed a completely non-contact structural identification system, which targeted the identification
of bridge unit influence line under operational traffic. (Lydon et al. 2019) provided a non-contact low
cost AI based solution for vehicle classification and associated bridge displacement using CNNmeth-
ods. (Jung et al. 2019) described three phases of a bridge inspection using UAVs. Also, three major
challenges, which are related to a UAVś flight, image data acquisition, and damage identification,
respectively, are identified and their possible solutions are discussed.

Hence, consumer-grade cameras can be utilized as non-contact sensors for civil structures inspec-
tions owning to their high availability, low cost and easy installation. Normally, abundant videos
are taken by a single camera and object tracking methods are applied to figure out the structural



A Novel DNN tracking algorithm for structural system identification 3

displacement.
Template-matching techniques were adopted to measure the displacement time histories of struc-

tures in an indoor shaking table test and the dynamic response of built bridges in outdoor field tests
(Fukuda et al. 2013). In the study of Feng and Feng (2016), the vision sensors were proposed based
on two template matching schemes: the up-sampled cross correlation (UCC) and the orientation
code matching (OCM). A new gradient-based computer vision technique edge enhanced matching
(EEM), improved from OCM, was developed to measure displacements of low-contrast natural tar-
gets (Luo and Feng 2018). Two field tests were conducted to compare the tracking ability of EEM and
OCMmethods. An advanced video deflectometer using off-axis digital image correlation (DIC) was
proposed for the measurement of vertical deflection of bridges. The inverse compositional Gauss–
Newton algorithm was employed to achieve real-time displacement (Pan et al. 2016). Commercial
cameras and optical flow technologies were used to calculate variation of optical intensity of an arbi-
trary selected region of interest (ROI) on the cable image sequence. The obtained optical flow vectors
provided the direction of cable vibrations (Ji and Chang 2008). Yoon et al. (2016) used corner de-
tection method suggested by Harris and Stephens (Harris and Stephens 1988) to extract the features
within the ROI in the initial video frame. Identified corners in two images were matched with the help
of the Kanade-Lucas-Tomasi Feature Tracker (Shi and Tomasi 1994) algorithm, and matching pairs
were refined with the MLESAC algorithm. A simplified fast-Hessian detector and a pre-purification-
based RANdom Sampling Consistency (RANSAC) were proposed to monitor bridge deflections.
Compared with scale-invariant feature transform (SIFT), speeded-up robust features (SURF) and tra-
ditional template matching algorithms, the combined SURF-BRISK performed better, and the relative
errors were within 10% (Yu and Zhang 2020).

In summary, the earliest stage of these tracking methods were built on template matching tech-
niques, including DIC, edge detection, optical flow and OCM. Template matching methods could
only detect motions moving in parallel, which were not suitable for changing light conditions, scale
variances and fast motions. Then, feature point tracking methods like Harris corner detection, SIFT,
SURF, and features from accelerated segment (FAST) were introduced in the SHM community. Fea-
ture tracking methods consisted of four steps: detection, description, matching, and purification. In
the detection phase, the detector extracted all the potential points in a selected area. A selected region,
which covers all the potential moving area, is defined before tracking. However, the displacements of
structures vary under different external forces, which means the tracking object can randomly appear
at any place in a video. Larger displacements require a larger pre-defined bounding box and more
amount of time for feature point extraction andmatching. Besides, these generative trackers construct
templates based on intensive features inside the bounding box without considering the background in-
formation. A clear deficiency of using data exclusively from foreground is that comparatively simple
model can be trained. The accuracy of the template matching techniques is largely dependent on the
image quality, which is often difficult to guarantee in complex field environmental conditions such
as illumination variation, partial target occlusion, fast motion, deformation and background clutter
(Wu et al. 2015).

Nowadays deep learning has dominated various computer vision tasks including semantic seg-
mentation (Liu et al. 2019) and video object tracking (Zhang et al. 2019, 2020, Peng et al. 2020).
CNN automatically extracts features from raw input images rather than using human defined fea-
tures. In this study, we firstly propose a vision structural system identification framework with a
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Fig. 1 The flowchart of vision-based displacement measurement system. Original videos are taken by (a)
commercial cameras and (b) UAVs. UAV videos are stabilized to eliminate the vibrations of UAV itself. Then,
(c) video frames need to rectify lens distortions through (d) camera calibration. Camera parameters and (e)
world coordinate systems are also established. Raw video images are sent to our firstly proposed (f) DNN
tracking network: SiamSDN. Finally, we transform the (g) displacement time histories from pixel level to
metric system.

novel deep neural network (DNN) based object tracking algorithm, named Siamese Single Decoder
Network (SiamSDN). Then a shaking table test of a five-storey structure is conducted to demonstrate
the accuracy and efficiency of the approach. We also record the shaking table test with an unmanned
aerial vehicle (UAV) camera to simulate the field test. To eliminate the small and random drifts, digi-
tal video stabilization (DVS) is proposed to obtain stable videos through motion compensation based
on background stationary objects.

2. System Model Overview

In this section, we provide an overview of the proposed vision-based displacement measurement
system. The method mainly consists of four parts: (1) original video taken by commercial cellphone
cameras and pre-processed video taken by the UAV; (2) camera system setups including calibrating
cameras and building reference coordinates; (3) DNN-based video object tracking algorithm and (4)
displacement measurements and system identifications. The technical flowchart is shown in Fig. 1.

Original videos are taken by consumer grade cameras: iPhone 6 rear camera and Da-Jiang Inno-
vations (DJI) UAV. A UAV has small degrees of vibrations even if it is stationary at one point during
its flight. The small vibrations lead to huge error while calculating the motions of structures. There-
fore, the UAV videos need to be stabilized to eliminate the small and random drifts. Then, videos are
divided into subsequent frames for future processing. Since regular commercial cameras use wide-
angle lens, the captured images encompass distortions. It is crucial to calibrate the lens distortion
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and rectify the video frames. The intrinsic and extrinsic parameters are calculated, and the world
coordinate system (WCS) and local coordinate system (LCS) are settled down to transform the pixel
level into metric system. The pre-processed video frames are the input of the end-to-end DNN object
tracking pipeline, named SiamSDN. The tracking object is identified solely in the first frame. Given
a sequence of input images, SiamSDN utilizes a class-specific detector to accurately predict the mo-
tion state (location, size or orientation) of the object in each frame. Finally, the pixel displacement
time histories are obtained and transformed into the metric displacements via the calculated camera
parameters.

Fig. 2 Main framework of SiamSDN. From left to right: input image pair, feature extraction subnetwork,
correlation operator, decoder and output score map. Full scale exemplar and instance raw images are fed into
the template and search branches respectively. Single decoder is used for restoring both position and scale
information.

3. Vision-based Displacement Measurement

3.1 SiamSDN framework

In this section, we provide details of the proposed SiamSDN framework. As shown in Fig. 2,
the proposed network includes five typical parts: input image pairs, feature extraction subnetwork,
matching function, decoder and output score map. The matching function is also known as the cor-
relation operator. Conventional discriminative trackers are based on correlation filter, which trains a
regressor by exploiting the properties of circular correlation and performing operations in the Fourier
domain. It can do online tracking and update the weights of filters at the same time efficiently
(Bertinetto et al. 2016). SiamSDN combines the advantage of CNN and correlation filter. It uses
deep features to improve the accuracy.

3.1.1 Input image pairs
Since the network is an end-to-end design, raw images are fed into the two input branches. Mean-

while, the fully-convolutional framework accepts arbitrary size of instance and exemplar pairs as
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Fig. 3 Training pairs extracted from the same video: the first row and the second row display the exemplar and
the instance, respectively. The third row is the corresponding label.

illustrated in Fig. 3. Traditional Siamese based trackers fill the missing portions with the mean RGB
value when a sub-window extends beyond the extent of the image. In this study, to ensure that all the
image pairs are reshaped into a fixed size, the resizing of image is not included. Instead, the original
image without padding is treated as instance. Then, exemplar images are up-sampled to the maximum
size in a batch, which means the exemplar size is randomly altered according to each batch.

3.1.2 Feature extraction subnetwork
The feature extraction subnetwork is fully-convolutional. Similar to VGG, we only use an archi-

tecture with very small 3× 3 convolution filters. The network can achieve same receptive field with
low burden of parameters.

Two branches compose the subnetwork. The template branch receives the exemplar patch (de-
noted as z). The search branch receives the full-scale instance patch (denoted as x). The two feature
extraction branches share the same parameters. Thus, the same types of features can be compared in
the following network. Let Lt represents the extraction operator Ltx[u] = x[u − t], single padding
introduced into the network with stride k can be defined as:

h (Lktx) = Lth(x) + b (1)

Fig. 4 Visualization of output heat map of an instance image. The results of SiamSDN are more accurate due
to the single decoder layer.
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3.1.3 Correlation operator
Correlation operator is a batch processing function, which compares the Euclidean distance or

similarity metric between ϕ(z) and ϕ(x). Here ϕ(z) and ϕ(x) denote the outputs of template and
search branches. Combining deep features in a higher dimension is equivalent to dense sampling
around the bounding box and evaluating similarity after each feature extraction. However, the former
method is more efficient due to the smaller scale of high dimension feature. For convenience, let
u(ϕ(z), ϕ(x)) denotes the output of correlation function. The output is a multi-layer two-dimension
raw map.

Various deep features are combined by the subsequent decoder network. To obtain a single channel
response map for target localization, SiamFC (Bertinetto et al. 2016) utilizes a cross-correlation layer
to obtain a single channel response map for target localization. In SiamRPN (Li et al. 2018), cross-
correlation is extended to embed much higher level information such as anchors. Simply adding
up these features will mix features from different aspects. The objects in the same category have
high response on same channels, while responses of the rest channels are suppressed. Each channel
represents the semantic information in accordance with the class. Thus, element-wise correlation is
proposed for future decoder analysis.

3.1.4 Decoder
Since correlation operator is adopted into the network, decoder is needed to interpret the compar-

ison results, namely raw maps, from higher into lower dimension. Conventional Siamese trackers
simply interpolate the raw map into a larger size. This operation cannot fully decode the positions
and details of correlation operator. A decoder with three interpolating layers and three deconvolution
layers is adopted, as illustrated in Fig.2. Correlation operator offers the maximum response position
and to what extent these two features are similar to each other. Simple interpolating can only provide
an area in the neighbourhood around the object center. Moreover, a small scale 17 × 17 score map
cannot properly reserve the scale information, and the similarity between the exemplar and the in-
stance is diluted. As shown in Fig.4, the heat map of simple up-sampling of the correlation operator
output is less accurate both in position and scale than the decoder subnetwork. Thus, a deconvolution
layer is needed after interpolating. A single decoder branch is adopted taking these into consideration.
Other decoders like regional proposal, multi-scale test and online fine-tuning can be discarded.

3.1.5 Output score map
The output scoremap shares the same size as instance image. In order to combine the classification

and bounding box regression tasks of tracking together, the label is designed to obey two-dimension
normal distribution as illustrated in Fig.3. Themean value is the centre of bounding box. According to
the three sigma rule (Pukelsheim 1994), the probability forX falling away from its mean bymore than
3 standard deviation is at most 5% if X obeys the normal distribution. Thus, the standard deviation
in our label is one sixth of the width and height. The area outside of the bounding box is set to zero.
The response value intensifies with the increase of overlapping area between the exemplar and the
instance. Hence, the score around the edge of bounding box should be lower than the center part.

The tracking problem can be reinterpreted from a binary classification into a simple regression
issue. The centre of the tracking object is obtained by mean values of the score map and the scale
can be obtained by standard deviation. With single branch decoder, we integrate the foreground and
background classification and bounding box regression into one regression issue.
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Then, the loss function for each pair computes the distance between the label and the score map:

l(y, ypred) = (y − ypred)
2 (2)

where ypred is the response value in the score map. To exploit the fully-convolutional nature of our
model, the decoder will produce a map of scores D. Define the loss of a score map to be the sum of
individual losses:

L(y, ypred) =
1

|D|
∑
i∈D

l(y[i], ypred[i]) (3)

Notice that the positive area is far more less than the negative area. To balance the unevenness,
the loss function can be redefined as:

L(y, ypred) =
λ1

|Dpos|
∑

i∈Dpos

l(y[i], ypred[i]) +
λ2

|Dneg|
∑

i∈Dneg

l(y[i], ypred[i]) (4)

where λ1 and λ2 are proportions of negative and positive areas over the entire score map. The loss of
positive and negative area carry the same weight. Finally, the parameters in the network are obtained
by applying Stochastic Gradient Descent (SGD):

argminθ L(y, ypred) (5)

3.1.6 Implementation details
The parameters of feature extraction subnetwork and decoder are found by minimizing Eq. 5 with

SGD. The initial values of the parameters follow a Gaussian distribution, and are scaled according
to the Kaiming method (He et al. 2015). 50 epochs are performed and the learning rate is decreased
geometrically at 30 epoch from 10−3 to 10−5. The gradients for each iteration are calculated using
mini batches of size 128. We use GOT-10k (Huang et al. 2018) for training and OTB (Wu et al. 2015)
and VOT dataset for testing in order to verify the feasibility and efficiency of our model. During
tracking phase, the template branch is not updated online. For evaluation metrics, precision plot and
success plot are two metrics to evaluate the tracker. The precision rate calculates the percentage of
frames whose centre distances between the target and the ground-truth are within the given threshold.
Normally, the threshold is 20 pixels. The success rate computes the quotient of the intersection and
union areas. The area under curve of success plot is used to rank all the trackers.

3.2 Camera calibration

This study uses consumer-grade cameras (iPhone6 rear camera) to capture images. Since this kind
of camera uses wide-angle lens, the captured images involve some distortions. Thus, the parameters
of the camera and lens have to be calibrated first. It is crucial to obtain the optical parameters to
calculate the structural displacement.

Under ideal conditions, imaging of objects in cameras can be described as using the “pinhole
imaging” model, which is mathematically expressed as (Forsyth and Ponce 2002):

s

uv
1

 = K3×3

[
R3×3 t3×1

] 
X
Y
Z
1

 (6)
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Fig. 5 Calibration process: camera-centered Fig. 6 Calibration process: chessboard-centered

Table 1 Internal parameters of iPhone 6 rear camera

Parameter α β c u0 v0

Value 2821.7 2815.78 −0.3299 1627.8 1201.1

Eq. 6 describes the relationship between a point p(X,Y, Z, 1)T using the homogeneous coordinates
in three-dimensional space and the corresponding point p(u, v, 1)T on the image plane. In particular,
K is called the intrinsic matrix, which is only related to the camera; R and t are extrinsic parameter-
matrices; s is the scaling factor. The intrinsic and extrinsic matrix are calculated to transform the
pixel level displacements into metric level displacements. Calibrations are conducted in Fig. 5 and 6
to fit the five independent parameters (α, β, c, u0, v0) in the intrinsic matrix K. The lens distortion
coefficients have been acquired. ki(i = 1, 2, 3), and pj(j = 1, 2) denotes the distortion coefficients.
The results of parameter calibration are as shown in Tables 1 and 2.

Fig. 7 Global motions and local motions Fig. 8 SIFT point detection

Fig. 9 SIFT point matching Fig. 10 Motion compensation
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Table 2 Distortion coefficient of iPhone 6 rear camera

Parameter k1 k2 k3 p1 p2

Value 0.0617 0.125 −0.605 −9.738×10−4 2.508× 10−4

3.3 Digital video stabilization

As UAV vibrates while hovering over a stationary point, this section introduces the method to
eliminate displacements caused by the UAV. Although the tripod head can substantially reduce the
jitter of cameras, small motions or rotations of camera will lead to huge error when measuring the
structural displacements. Hence, the raw videos taken by the UAV still have to undergo digital video
stabilization (DVS). Yoon et al. (2018) calculated the non-stationary motion of the UAV camera
by using background information and integrated the relative displacement with the camera motion to
acquire the absolute displacement. DVS aims to obtain stable videos through vibration compensation
based on image processing algorithms.

Motions between two video frames can be divided into global motions and local motions. Global
motions happen in most of the video frames, while the latter one only involve a small portion of
the video. Global motions generally represent motions of the camera itself, whereas local motions
mainly represent motions of foreground objects, as illustrated in Fig.7. In the research scene of this
study, global motions are vibrations of the UAV camera, whereas local motions are the vibrations of
the structural model being shot. Since DVS aims to eliminate the jitter of the camera, its main task
include global motion estimation, motion compensation, and image generation.

DVS includes 2D, 3D, and 2.5D algorithms according to the differences between motion models.
The 2D algorithm assumes that all points in an image only show planar motion and optical flow is
determined by estimating the translation, scaling, and rotation between adjacent frame images. The
model of the 2D algorithm is relatively simple. Stable output results can be obtained successfully in
relatively simplemotion cases. For the application studied in this paper, when the UAV records videos
of a structural model, the jitter of the camera is relatively small. In addition, tracking object scales
are relatively small in comparison to the imaging field of the camera. Therefore, the 2D algorithm is
employed to perform video stabilisation on videos recorded.

In the 2D video stabilisation algorithm, estimation of camera global motion parameters mainly in-
cludes gray projection (Lu and Du 2011), block matching (Bierling 1988) and feature point matching
(Rosten and Drummond 2005). The feature point matching method obtains the optical flow of global
motions in videos through extracting and matching of feature points. During video stabilization, the
first frame is used as a reference. SIFT Point detection is carried out (Fig. 8) for two consecutive im-
age frames. The vehicles in the video are foreground tracking objects. Since motion compensations
are based on fixed points in two neighbouring frames, more feature points are detected in the back-
ground than foreground. Subsequently, feature descriptions and feature point matching are conducted
(Fig.9). Consistent refinement is employed to estimate motion models. During motion estimation, it
is assumed that the images satisfy the refined model, the matrix of which can be expressed as:

Haffine =

a1 a2 0
a3 a4 0
tx ty 1

 (7)
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where ai(i = 1, 2, 3, 4) is related to scaling, rotation, and cropping in image transformation, and
tx and ty are translation components. Motion compensation for each image is achieved through
calculated motion models (Fig.10).

4. Shaking Table Test and Dynamic Performance Evaluation

This section provides the detail design of the shaking table test of a five-storey structure and the
corresponding dynamic performance evaluation. The proposed vision framework is applied to the
measurement process to verify its accuracy and robustness.

Fig. 11 Diagram of model design and transducer ar-
rangement

Fig. 12 Tracking setup: bounding boxes defined in the
first frame

4.1 Test design

A five-storey structure is designed and deployed in the test. The dimensions of the model and the
arrangement of transducers are shown in Fig.11. Two types of video recording equipment are used
in the test. One of them is the iPhone 6 rear camera, with a frame rate of 30 fps and a resolution
of (1920 × 1080) pixels. The other one is a DJI UAV with a frame rate of 30 fps and a resolution
of (3968 × 2976) pixels. The test conditions are listed in Table 3. The Linear Variable Differential
Transformer (LVDT) displacement transducers used for reference have a sampling rate of 256 Hz,
and are placed on each floor and on the base of the model. The experimental setup is shown in Fig.13
and 14.
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Fig. 13 Setup of the commercial camera test Fig. 14 Setup of the UAV test

Fig. 15 Testing scenario 1: comparison of displacements by the proposed SiamSDN system and LVDT trans-
ducers
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Table 3 Test conditions

No. Condition Amplitude (mm) Frequency (Hz) Duration (s) Measuring tool
1 Sine 5 8 60 iPhone
2 Sine 5 11 60 iPhone
3 Sine 5 8 60 UAV
4 Sine 5 11 60 UAV
5 Linear sweep 10 1-50 180 iPhone

Table 4 Scale factors of each floor from camera calibrations

No. Ground 1F 2F 3F 4F 5F
1 1.96 1.81 1.81 1.81 1.79 1.82
2 1.25 1.48 2.32 2.41 1.39 1.88
3 1.33 1.30 1.30 1.22 1.22 1.23
4 1.62 1.52 1.52 1.52 1.45 1.45
5 1.26 1.17 1.17 1.20 1.19 1.19

Fig. 16 Testing scenario 2: comparison of displacements by the proposed SiamSDN system and LVDT trans-
ducers

4.2 Commercial camera test results

Videos recorded by iPhone 6 are separated into sequences of video frames. Then, the tracking
object of each floor is selected in a bounding box in the first frame, as shown in Fig.12. The bound-
ing box position and scale are detected automatically in the following frames. After the end to end
SiamSDN pipeline, we obtain pixel level displacement time histories. By measuring pixel distances
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Table 5 Measurement errors of each floor in the shaking table test with commercial cameras

Condition Algorithm Error type 1F 2F 3F 4F 5F
Scenario 1 SiamSDN RMSE (mm) 0.11 0.14 0.07 0.25 0.18

NRMSE (%) 1.06 1.56 3.23 4.50 2.01
SIFT RMSE (mm) 0.73 1.85 0.08 0.68 0.40

NRMSE (%) 6.87 20.59 4.00 12.07 4.37
Improvement (%) 84.57 92.42 19.25 62.72 54.00

Scenario 2 SiamSDN RMSE (mm) 0.62 0.27 0.61 0.09 0.30
NRMSE (%) 3.90 1.24 4.42 1.97 2.03

SIFT RMSE (mm) 1.77 3.31 0.94 0.62 0.99
NRMSE (%) 11.11 15.00 6.89 14.29 6.76

Improvement (%) 64.90 91.73 35.85 86.21 69.97

of objects in the calibrated images, scale factors between actual physical coordinates and pixel coor-
dinates (pixel resolution) are obtained. Scale factors of the commercial cameras are listed in Table 4.
The pixel distance and scale factor are multiplied to give the final displacement time history curves.

Fig. 15 and 16 show the displacement time histories of testing scenarios 1 and 2. For a better
comparison, one segment of the time histories is enlarged. The measurement results based on the
proposed vision method agree well with those obtained by the LVDT displacement transducers. To
quantify the precision of the vision-based system, error analysis is conducted using the root mean
square error (RMSE) in Eq. 8 and the normalized root mean square error (NRMSE) in Eq. 9 (Feng
et al. 2015):

RMSE =

√√√√ 1

n

n∑
i=1

(xi − yi)2 (8)

NRMSE =
RMSE

ymax − ymin
=

√
1
n

∑n
i=1(xi − yi)2

ymax − ymin
× 100% (9)

where n is the number of data points, xi and yi are the metric displacement measured by the vision
and LVDT systems at time ti, repectively.

Errors between the vision method and LVDT sensors are listed in Table 5. For the vision method,
both SIFT point matching and the proposed SiamSDN tracking network are considered for compar-
ison. As shown in Table 5, SiamSDN provides a more accurate tracking result than feature point
matching (SIFT). The NRMSE of SiamSDN has improved from 19.25% (3F) to 92.42% (2F) in test-
ing scenario 1, and also increased from 35.85% (3F) to 91.73% (2F) in testing scenario 2. The average
improvement is 66.16%. The precision drops when the testing frequency increases. This is mainly
because the frequency of test condition 2 is 11 Hz, which reaches the theoretical sampling limits of
iPhone 6.

4.3 UAV camera test results

The vibrations of the UAV camera induce global motions. Therefore, DVS has to be conducted
before tracking the motions of the target. First, the background region is selected in the first frame for
key points detection (Fig. 17). Then, the feature points in the chosen background area are detected in
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Fig. 17 DVS: (a) Feature points extracted from the background in the first frame (b) Adjusted images after
motion compensation: b1, b2, b3, b4, b5 and b6 are frame 1, 200, 500, 800, 1000 and 1400 from the original
video.

subsequent frames. By matching feature points of two adjacent frames, the projection transformation
model between the two images is calculated. The projection transformation matrix of the i th frame is
obtained by successive multiplication of the projection transformation matrices of the previous i− 1
frames:

Hcum,i =
i−1∏
j=0

Hj (10)

Finally, using the first frame as the stabilisation reference, a stabilized image sequence is obtained.
Fig. 18 and 19 are the final tracking result of the testing scenario 3 and 4. The original UAV

video tracking results are also displayed. As shown in the figures, the UAV camera vibrates as it
is hovering over a fixed point, which largely affects the displacement analysis adversely. And the
proposed DVS method has eliminated global motions caused by the camera. The motions of UAV
camera in scenarios 3 and 4 are shown in Fig. 20 and 21. The largest displacements of the UAV
are 180 mm and 60 mm in two scenarios. Frequency domain analyses reveal that the vibrations of
the UAV cause energy concentration of measurement results in the low-frequency range below 1.5
Hz. Errors between the proposed method and LVDT sensors are listed in Table 6. Again, for the
vision method, both SIFT point matching and the proposed SiamSDN tracking network are consid-
ered for comparison. As shown in Table 6, all the tracking results of SiamSDN are better than the
SIFT method. The NRMSE of SiamSDN has improved from 22.70% (3F) to 91.38% (2F) in testing
scenario 3, and also increased from 1.01% (3F) to 85.36% (2F) in testing scenario 4. The average
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Fig. 18 Testing scenario 3: comparison of displacements by the proposed SiamSDN system and LVDT trans-
ducers. The green curve is calculated from the original UAV video, the red curve is obtained from the video
after DVS processing, and the blue one is the LVDT displacement.
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Fig. 19 Testing scenario 4: comparison of displacements by the proposed SiamSDN system and LVDT trans-
ducers. The green curve is calculated from the original UAV video, the red curve is obtained from the video
after DVS processing, and the blue one is the LVDT displacement.
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Fig. 20 Testing scenario 3: global motions of the UAV
camera in both x and y directions.

Fig. 21 Testing scenario 4: global motions of the UAV
camera in both x and y directions.

Table 6 Measurement errors of each floor in the shaking table test with UAV cameras

Condition Algorithm Error type 1F 2F 3F 4F 5F
Scenario 3 SiamSDN RMSE (mm) 0.38 0.09 0.05 0.03 0.16

NRMSE (%) 4.52 1.32 4.12 0.70 2.22
SIFT RMSE (mm) 1.18 1.05 0.06 0.31 0.29

NRMSE (%) 13.91 15.32 5.33 6.65 4.01
Improvement (%) 67.51 91.38 22.70 89.47 44.64

Scenario 4 SiamSDN RMSE (mm) 0.20 0.19 0.44 0.04 0.27
NRMSE (%) 6.30 2.44 5.91 1.69 3.33

SIFT RMSE (mm) 0.25 1.32 0.45 0.21 0.82
NRMSE (%) 8.07 16.67 5.97 8.42 9.94

Improvement (%) 21.93 85.36 1.01 79.93 66.50

improvement is 57.54%. Comparing scenario 1 and 3, 2 and 4, the RMSE of the UAV is smaller than
the commercial cameras under the same shaking table input. This is mainly because the UAV cam-
era has a higher resolution than than iPhone 6, which provides a better tracking accuracy. Through
DVS and the novel DNN object tracking algorithm, the UAV measuring system can effectively and
accurately restore the actual displacement of the target structure.

4.4 Analysis of frequency characteristics

Fig. 22, 23, 24 and 25 manifest the power spectrum density (PSD) computed from the displace-
ments in testing conditions 1, 2, 3 and 4 respectively. Comparing the results of the vision and LVDT
methods, we can observe that the frequency component obtained from both displacements agree well
with each other. In testing scenario 5, we analyze the dominant frequencies and other high-order fre-
quencies from the vision measurement system (Fig. 26). The higher-order frequencies are calculated
from the EMD technique (Huang et al. 1998), and the results are listed in Table 7. Comparisons of
the test results reveal that the non-contact vision measurement method is as accurate as the traditional
LVDT methods.

5. Conclusions

This study proposes a vision structural system identification framework with a novel DNN tracker
SiamSDN. The proposed system requires no target installation and utilizes consumer-grade cellphone
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Fig. 22 Testing scenario 1: comparisons of the power spectrum density

Fig. 23 Testing scenario 2: comparisons of the power spectrum density
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Fig. 24 Testing scenario 3: comparisons of the power spectrum density

Fig. 25 Testing scenario 4: comparisons of the power spectrum density
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Fig. 26 Testing scenario 5: comparisons of the power spectrum density

Table 7 Natural frequencies identification from testing scenario 5

Measurement 1st 2nd 3rd
LVDT (Hz) 2.000 3.379 10.948

SiamSDN (Hz) 1.997 3.354 11.052

cameras. This study firstly explores the application of an end to end DNN tracking pipeline, which
is designed based on the Siamese network, in the field of structural system identification. A shaking
table test of a 5-storey structure is carried out to demonstrate the efficiency. Besides, a UAV camera
is used to simulate the field test. To minimize the vibrations of UAV, DVS is proposed to eliminate
the drifts through motion compensation. Videos taken by both the commercial and UAV cameras are
analyzed to calculate the displacement time histories, and the frequency characteristics are obtained
from the displacements. The following conclusions can be made after analyzing the test results.

1. The accuracy and robustness of the proposed vision measuring framework have been proved.
The shaking table test has simulated the field test of measuring the displacements of tall build-
ings via UAV camera with no manually installed target. SiamSDN does not require manually
extracted features or pre-defined motion areas. The tracking object is solely identified in the
first frame. Given a sequence of input images, SiamSDN uses a class-specific detector to pre-
dict the states of an object in each frame.

2. The tracking precision of DNN tracker is more accurate than conventional generative track-
ers. CNN automatically extracts and selects the features from the tracking object, which is
more preferable for tracking the small displacements of the structure. SiamSDN has improved
the displacement measuring accuracy by 66.16% through analyzing results of the commercial
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camera. Besides, SiamSDN operates at 67 frames per second(fps), while SIFT operates at 0.8
fps.

3. Original videos recorded by the UAV contain the structural displacement and the global motion
of UAV itself. Frequency domain analysis reveals that vibrations of the UAV are mainly below
1.5 Hz. DVS has successfully eliminated drifts induced by the UAV vibration, and restore the
absolute displacement of the structure. It is crucial when using UAV as a camera carrier for
SHM in the field test.

4. After DVS processing, the displacement time histories of the structure can be obtained. SiamSDN
has improved the displacement measuring accuracy by 57.54% through analyzing results of the
UAV camera. Dominant and higher-order frequencies are calculated from the displacements.

The high availability and low cost of this framework largely facilitate the building monitoring. It has
good potential for the applications in SHM. In future work, stereo-vision can be adopted to further
improve the accuracy of measurement.
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