
IMB-NAS: Neural Architecture Search for Imbalanced Datasets

Rahul Duggal1, Sheng-Yun Peng1, Hao Zhou, Duen Horng Chau1

1 Georgia Institute of Technology
{rahulduggal, shengyun, polo}@gatech.edu, zhhoper@gmail.com

Abstract

Class imbalance is a ubiquitous phenomenon occurring in
real world data distributions. To overcome its detrimental ef-
fect on training accurate classifiers, existing work follows
three major directions: class re-balancing, information trans-
fer, and representation learning. In this paper, we propose a
new and complementary direction for improving performance
on long tailed datasets—optimising the backbone architec-
ture through neural architecture search (NAS). We find that
an architecture’s accuracy obtained on a balanced dataset is
not indicative of good performance on imbalanced ones. This
poses the need for a full NAS run on long tailed datasets
which can quickly become prohibitively compute intensive.
To alleviate this compute burden, we aim to efficiently adapt
a NAS super-network from a balanced source dataset to
an imbalanced target one. Among several adaptation strate-
gies, we find that the most effective one is to retrain the
linear classification head with reweighted loss, while freez-
ing the backbone NAS super-network trained on a balanced
source dataset. We perform extensive experiments on multi-
ple datasets and provide concrete insights to optimise archi-
tectures for long tailed datasets.

1 Introduction
The natural world follows a long tail data distribution
wherein a small percentage of classes constitute the bulk of
data samples, while a small percentage of data is distributed
across numerous minority classes. Training accurate clas-
sifiers on imbalanced datasets has been an active research
direction since the early 90s. Much of prior work (Kang
et al. 2019; Zhou et al. 2020; Duggal et al. 2021a) centers
on improving the performance (measured via accuracy) of a
fixed backbone architecture such as ResNet-32. In this work,
we take a complementary direction and aim to optimise the
backbone architecture via neural architecture search. Indeed
this is an important direction since prevalent practices de-
mand that neural architectures be optimised to fit the size/la-
tency constraints of tiny edge devices.

To optimise the backbone architecture, we rely on the
recent work from Neural Architecture Search (NAS) (Guo
et al. 2020) that optimises a neural network’s architecture
primarily on datasets that are balanced across classes. This
workflow naturally prompts the question: is the architec-
ture optimised on a class balanced dataset also the optimal
one for imbalanced datasets? Table 1 provides evidence to

Dataset Model Flops Accuracy (%)
bal(1×) imbal(100×)

Cifar10 A1 410 94.6 77.3
A2 407 94.7 74.1

Cifar100 A3 400 76.1 39.4
A4 179 75.0 43.0

Table 1: Motivation. We sample four architectures A1-A4
from the DARTS search space and train them on balanced
(i.e. 1×) and imbalanced versions (i.e. 100×) of Cifar10 and
Cifar100. (Top) Two similarly sized architectures (A1,A2)
achieve similar accuracy on balanced Cifar10, but differ by
3% in presence of 100× imbalance. (Bottom) The larger
architecture (A3) outperforms the smaller on (A4) on bal-
anced Cifar100, but under performs by 3.6% in the presence
of 100× imbalance. This suggests that an architecture’s per-
formance on balanced datasets is not indicative of it’s per-
formance on imbalanced ones.

the contrary. The first row shows two architectures–A1,A2–
sampled from the DARTS search space (Liu, Simonyan, and
Yang 2018) having similar size and accuracy on balanced
Cifar10, but an accuracy gap of 3% in the presence of 100×
imbalance. The second row compares a larger architecture
A3 outperforms a smaller one A4 on balanced Cifar100.
However, in the presence of 100× imbalance, the smaller
architecture outperforms the larger one by more than 3%.
These results and more in Sec 3.2, indicate that the optimal
architecture on a balanced dataset may not be the optimal
one for imbalanced datasets. This means each target imbal-
anced dataset requires its own NAS procedure to obtain the
optimal architecture.

Running a NAS procedure for each target dataset is com-
putationally expensive and quickly becomes intractable in
the presence of multiple target datasets. To overcome the
compute burden of running NAS from scratch, we formal-
ize the task of architectural rank adaptation from balanced
to imbalanced datasets. Towards this task, Section 3.4 de-
scribes two intuitive rank adaptation procedures that either
fine-tune the classifier only, or together with the backbone.
Our comprehensive experiments reveal the key insight that
the adaptation procedure is most affected by the linear clas-

ar
X

iv
:2

21
0.

00
13

6v
1 

 [
cs

.L
G

] 
 3

0 
Se

p 
20

22



sification head trained on top of the backbone. Armed with
this insight, we propose to re-use a NAS super-net backbone
trained on balanced data and re-train only the classification
head to efficiently adapt a pre-trained NAS super-net for im-
balanced data. This is extremely efficient since it involves
training only a linear layer on top of the pre-trained super-
network.

Overall, our contributions in this work are:

1. New insight. We show that architectural rankings trans-
fers poorly from balanced to imbalanced datasets.

2. Novel task. We construct the novel task to efficient
adapt a NAS super-network from balanced to imbalanced
datasets.

3. Novel solution. We propose a simple and efficient
solution–retraining the classifier head while freezing the
backbone–to efficiently adapt a NAS super-network from
balanced to imbalanced datasets.

2 Related Works
We cover relevant work from three related areas.

2.1 Overcoming long tail class imbalance
Prior work on tackling long tail imbalance can di-
vided into three broad areas (see survey (Zhang et al.
2021b)): class-rebalancing that includes data re-sampling
(SMOTE (Chawla et al. 2002), ADASYN (He et al. 2008)),
loss re-weighting (Kang et al. 2019; Cui et al. 2019; Dug-
gal et al. 2020, 2021a), logit adjustment (Menon et al. 2020;
Tian et al. 2020; Zhang et al. 2021a); Information augmen-
tation that includes transfer learning (Wang, Ramanan, and
Hebert 2017; Yin et al. 2019), data augmentation (Chu et al.
2020); and module improvement that encompasses methods
in representation learning (Liu et al. 2019), classifier de-
sign (Wu et al. 2020), decoupled training (Kang et al. 2019)
and ensembling (Zhou et al. 2020). Different from all of the
existing works, our work explores a new direction of perfor-
mance improvement on long tail datasets–that via optimis-
ing the backbone architecture. This complements existing
approaches and can work in tandem to further boost accu-
racy and efficiency on imbalanced datasets.

2.2 Neural architecture search
Prior work on architecture search can be categorized in
improving its three main pillars (see survey (Elsken, Met-
zen, and Hutter 2019))—Search space design with the idea
of incorporating a large diversity of architectures. Popular
spaces include cell based spaces such as NASNets (Zoph
et al. 2018), and recent spaces from the ShuffleNet (Zhang
et al. 2018) and MobileNet (Howard et al. 2017) model
families. The second pillar constitutes search strategy de-
sign to efficiently locate performant architectures from the
search space. Popular strategies involve reinforcement learn-
ing (Baker et al. 2016; Zoph et al. 2018), evolutionary algo-
rithms (Real et al. 2017; Duggal et al. 2021b) or gradient
descent on continuous relaxations of the search space (Liu,
Simonyan, and Yang 2018). The third pillar constitutes per-
formance estimation strategies (Baker et al. 2017; Falkner,

Klein, and Hutter 2018) with the goal of cheaply estimating
the goodness (in terms of accuracy or efficiency) of an ar-
chitecture. All of the above works search optimal architec-
tures on datasets that are fully balanced across all classes.
Our experiments however show that the set of optimal ar-
chitectures differ significantly from balanced to imbalanced
datasets. This calls for developing new NAS methods or ef-
ficient adaptation strategies (e.g. this work) to search for op-
timal architectures on real world, imbalanced datasets.

2.3 Architecture transfer
We summarize prior work on evaluating robustness of archi-
tectures to distributional shifts in the training dataset. Neural
Architecture Transfer (Lu et al. 2021) explore architectural
transferability from large-scale to small-scale fine grained
datasets. However, there are two limitations–the source and
target datasets considered in this work are balanced across
all classes and additionally this work assumes all target
datasets are known apriori which is infeasible in many in-
dustry use-cases. NASTransfer (Panda et al. 2021) consider
transferability between large-scale imbalanced datasets in-
cluding ImageNet-22k which is a highly imbalanced dataset.
Their approach is practically useful for very large datasets
(e.g. ImageNet-22k) for whom direct search is prohibitive,
however when it is feasible (e.g. on ImageNet) direct search
typically leads to better architectures than proxy search. Dif-
fering from these, our work advocates to directly adapt a
super-network pre-trained on fully balanced datasets (in-
stead of proxies) to imbalanced ones. A key feature of such
adaptation is efficiency—the compute required for such an
adaptation needs to be much lesser than that for repeating
the search on the target dataset.

3 Methodology
3.1 Notation
AssumeD = {x1, yi} denotes the training dataset of images
where yi is the label for image xi. Let nj specify the number
of training images in class j. After sorting the classes by car-
dinality in decreasing order, the long tail assumption speci-
fies that if i < j, then ni ≥ nj and n1 >> nC . We use φ
to denote a deep neural network that is composed of a back-
bone φ(a,wa) with architecture a, weights wa and a linear
classifier φ(wc). The model φ is trained using a training loss
and loss re-weighting strategy. On balanced datasets, we use
the cross entropy loss (denoted as CE) to train a neural net-
work. For imbalanced datasetsm we additionally incorpo-
rate the effective re-weighting strategy (Cui et al. 2019) that
reweights samples from class j with 1−β

1−βnj where β is a hy-
perparameter. Following previous works (Cao et al. 2019;
Duggal et al. 2020), the re-weighting strategy is applied af-
ter a delay of few training epochs which is denoted using the
shorthand DRW.

3.2 Architecture ranking transfer: A motivating
experiment

We study the impact of backbone architecture on imbalanced
datasets using the following experiment. We construct an ar-
chitecture search space A by sampling all 149 Mega Flops



(a) (b)

Architecture rankings transfer poorly across data imbalance

100x

100x

50x

50x

1x

0.6

0.8

0.4

0.20.57 0.24 0.26

0.32 0.25 0.29

0.24 0.16 0.22

1x

S
rc
:C

IF
A
R
10

Tgt: CIFAR100

100x

100x

50x

50x

1x

1x

S
rc
:C

IF
A
R
10

0

Tgt: CIFAR10

0.73 0.42 0.32

0.22 0.37 0.37

0.31 0.41 0.40
0.6

0.8

0.4

0.2

Figure 1: Evaluating architectural transferability. We
train all 149 Mflop architectures from NATS-Bench on Ci-
far10, Cifar100 with 1×, 50×, 100× imbalance and com-
pute kendall tau correlation between the rank orderings on
all datasets. We observe high correlation (bottom left cells)
when both Ds,Dt are balanced, and low correlation other-
wise. This means that architectural rankings transfer poorly
across data imbalance.

architectures from the NATS-bench search space (Dong
et al. 2021). Overall A contains 135 architectures with ex-
actly the same learning capacity (or Flops), but different ar-
chitectural patterns (e.g. kernel sizes, layer connectivity).
The architectures in A are trained on the source and tar-
get datasets Ds, Dt using loss function CE on balanced
datasets, and the re-weighted loss function CE+DRW on im-
balanced ones. Following this, the architectures are ranked
based on validation accuracy and the kendall Tau metric is
computed between the rank orderings obtained on Ds and
Dt. A high correlation means similar architectural rankings
on both datasets, while a low correlation implies widely dif-
ferent rankings.

Figure 1 presents the outcomes on two scenarios: (1) Ds

is Cifar10 at three levels of imbalance (1×, 50×, 100×) and
Dt is Cifar100 at the same imbalance levels; and (2) the op-
posite direction. There are two major observations—First,
the high correlation in the bottom left square indicates that
the architectural rankings transfer quite well across balanced
datasets. Second, the low correlation for all other cells in-
dicates low transferability across imbalanced datasets. This
means the rank orderings on imbalanced datasets widely dif-
fers from that on balanced ones.

To avoid the compute burden of performing a NAS run on
every target imbalanced dataset, we develop efficient “adap-
tation” procedures to adapt a NAS super-net from balanced
to imabalanced datsets. Before going into the details, in the
next section we provide a brief overview of exisiting NAS
methods.

3.3 Revisiting neural architecture search
We look at sampling based NAS methods that involve two
steps. The first step involves training a super-network with
backbone φ(a,wa) and classifier φ(wc) on a training dataset
D via the following minimization
w∗a,D, w

∗
c,D = min

wa,wc
E
a∼A

(L(φ(wc), φ(a,wa);D)) . (1)

Here the inner expectation is performed by sampling archi-
tectures a from a search space A via uniform, or attentive

sampling.
The second step involves searching the optimal architec-

ture that maximizes validation accuracy via the following
optimisation

a∗D = max
a∈A

Acc (φ(wc), φ(a,wa);D)) . (2)

This maximization is typically implemented via evolution-
ary search or reinforcement learning. Next, we discuss effi-
cient adaptation procedures to adapt a NAS super-net trained
on a balanced dataset onto an imbalanced one.

3.4 Rank adaptation procedures
Given source and target datasets Ds,Dt, we first train a
super-network on Ds by solving the following optimisation

w∗a,Ds
, w∗c,Ds

= min
wa,wc

E
a∼A

(L(φ(wc), φ(a,wa);Ds)) . (3)

Our goal then is to adapt the optimal super-net weights
w∗a,Ds

, w∗c,Ds
found on Ds to the target dataset Dt which

suffers from class imbalance. The most efficient adapta-
tion procedure involves freezing the backbone, while adapt-
ing only the linear classifier on Dt by minimizing the re-
weighted loss LRW
w∗c,Dt

= min
wc

E
a∼A

(
LRW (φ(wc), φ(a,w

∗
a,Ds

);Dt)
)
. (4)

The resulting super-network contains backbone weights
w∗a,Ds

trained on Ds and classifier weights w∗c,Ds
trained

on Dt. Solving the above optimisation is extremely efficient
since most of the network is frozen while only the classifier
is trained. On the other hand, one could also adapt the back-
bone by fine-tuning on the target dataset. This is achieved by
minimizing the delayed re-weighted loss LDRW
w∗∗a,Dt

, w∗c,Dt
= min
wa,wc

E
a∼A

(
LDRW (φ(wc), φ(a,w

∗
a,Ds

);Dt)
)
.

(5)
Here, the double star on w∗∗a,Dt

indicates the weights were
obtained via fine-tuning w∗a,Ds

using one tenth of the origi-
nal learning rate and one third the number of original train-
ing epochs. Also, recall that the delayed re-weighted loss
LDRW is nothing but the unweighted loss L in the first few
epochs and the re-weighted loss LRW subsequently. Note
that our second adaptation procedure is more compute inten-
sive since the backbone is also adapted, but still much less
intensive than running the full search on the target dataset.

Our final and most compute intensive procedure involves
directly searching on the target dataset via LDRW . This is
achieved via the following minimization

w∗a,Dt
, w∗c,Dt

= min
wa,wc

E
a∼A

(LDRW (φ(wc), φ(a,wa);Dt)) .
(6)

The three adaptation procedures and their associated com-
pute costs are summarized in Table 2.

4 Experiments
We begin this section by answering which rank adaptation
procedure works best, both in terms of efficiency of the pro-
cedure and the accuracy of the resulting networks. We then
perform an extensive ablation study to uncover the effect of
different design choices.



Adj Eqn Description

P0 (3) No adaptation.
P1 (4) Freeze backbone, retrain classifier on Dt.
P2 (5) Finetune backbone and retrain classifier on Dt
P3 (6) Re-train backbone and classifier on Dt.

Table 2: Summarizing rank adaptation procedures.

4.1 Implementation details
We implement our methods using Pytorch on a system con-
taining 8 V100 GPUs. Other details are as follows:

Datasets. We construct imbalanced versions of Cifar-10
and Cifar-100 by sub-sampling from their original training
splits (Cui et al. 2019). The cth class in the resulting datasets
contains nc = nµc examples where n is the original car-
dinality of class c, and µ ∈ [0, 1]. We select µ such that
the imbalance ratio—which is defined as the ratio between
the number of examples in the largest and smallest class—is
50× to 1000×.

Sub-network training strategies. We train a network on
balanced Cifar-10/100 for 200 epochs with an initial learn-
ing rate of 0.1 decayed by 0.01 at epochs 160 and 180 using
the cross entropy loss. On imbalanced versions, we intro-
duce effective re-weighting (Cui et al. 2019) at epoch 160
and refer to this strategy as delayed re-weighting or DRW-
160 (Cao et al. 2019).

Neural Architecture Search We train a super-network for
600 epochs with an initial learning rate of 0.1, decayed by
0.01 at epochs 400 and 500. On imbalanced datasets, re-
weighting is applied at epoch 400. For searching the best
subnet, we follow (Guo et al. 2020) and use an evolution-
ary search with 20 generations, population of 50, crossover
number 25, mutation number 25, mutate probability 0.1 and
top-k of 10.

Adaptation Strategies To adapt a super-network, we fine-
tune it for 200 epochs with an initial LR of 0.01, decayed
by 0.01 at epoch 100. In case of procedure P1, we introduce
re-weighting at epoch 1. For P2, we delay the re-weighting
to epoch 100. For P3, we follow the NAS strategy detailed
above.

4.2 Baseline and Paragon for IMB-NAS
Given a NAS super-network trained on a source dataset Ds,
our goal is to efficiently adapt it to the target dataset Dt fol-
lowing which, the best sub-net is searched in the adapted
super-net. Table 3a illustrates the results for the case when
Ds is Cifar10, and Dt is Cifar100 with varying levels of
imbalance. The first row (i.e. P0) refers to the case when
the best sub-nets obtained on Ds are re-trained on Dt. This
serves as our lower bound or baseline. The last row (i.e. P3)
refers to the case when the NAS super-net is trained on Dt.
This serves as the upper bound or the paragon of accuracy.
Our two adaptation procedures (P1, P2) in the middle rows
are highlighted yellow when they outperform the baseline,
and the better among the two is bolded.

Adp Imbalance Ratio

50× 100× 200× 400×
baseline P0 45.80 40.83 36.30 32.80

P1 45.06 41.93 36.76 33.70
P2 44.86 41.86 36.70 33.46

paragon P3 45.93 41.53 37.03 33.40

(a) Cifar10-1× −→ Cifar100-{50, 100, 200, 400}×

Adp Imbalance Ratio

100× 200× 400× 800×
baseline P0 75.96 68.96 63.26 56.90

P1 75.93 69.70 63.80 58.23
P2 75.86 69.26 63.70 58.03

paragon P3 76.03 70.23 63.96 57.70

(b) Cifar100-1× −→ Cifar10-{100, 200, 400, 800}×

Table 3: Comparing rank adaptation strategies. Given a
NAS super-net trained on Ds, we adapt it to Dt and search
the optimal sub-nets. These are retrained from scratch onDt
and the average validation accuracy is presented. Note that
sub-nets obtained via P1/P2 outperform P0 for high imbal-
ance ratios (shaded yellow) and typically P1 outperforms P2
(the winner is bolded). Results averaged over three seeds.

Observe from Tables 3a,3b that both adaptation proce-
dures comprehensively outperform the baseline at higher
levels of imbalance. This means that the architectures
searched on Ds can no longer be assumed as the optimal
ones on imbalanced target datasets. Interestingly, between
P1 and P2, we find that P1 consistently outperforms P2. This
is surprising since P2 also adapts the NAS backbone on the
target data whereas P1 re-uses the backbone from the source
dataset. We hypothesize this occurs because, class imbal-
ance is much larger an issue for searching the NAS backbone
than the domain difference between Cifar10 and Cifar100.

Overall, we find that P1 and P2 achieve very close accu-
racy to the paragon (P3) while avoiding much of the com-
pute burden of P3 as illustrated in the next section.

4.3 Dissecting the performance adaptation
In this section, we analyze different aspects of procedures
P1-P3 by applying them to adapt a NAS super-net pre-
trained on Cifar10-1x onto Cifar100-100x.

Comparison on training cost. We measure the wall-clock
training time on a single V100 GPU as a proxy for training
cost. The amortized training cost over three runs is presented
in Fig 2. It takes P1 2000 seconds to adapt a NAS super-
network from cifar10-1× to cifar100-100×. In comparison
P2 consumes 2×, and P3 consumes 5× more time. These
results demonstrate that not only P1 can successfully adapt
a super-net to improve accuracy, it is also very efficient.

Impact of fine-tuning the backbone with P2. In procedure
P2, we adapt the NAS backbone via fine-tuning on the target



0 2000

9,196 s

1,844 s
4000 6000 8000

2.46x less

4.98x lessP1

P2

P3
A
da

pt
.p

ro
ce
du

re

Wall-Clock Time (seconds)

Comparing the compute cost of adaptation procedures

3,725 s

Figure 2: Comparing the compute cost of adapting a NAS
super-net trained on Cifar10-1× onto Cifar100-100×. The
y-axis plots the wall clock time spent on a single V100 GPU.
Observe that P2 and P3 consume 2× and 5× the cost of P1.
Results averaged over three seeds.

Proc Epochs Imbalance Ratio

- 100× 200× 400×
P0 - 40.83 36.3 32.80
P1 - 41.93 36.76 33.70

P2

50 40.06 35.46 32.56
100 41.43 37.26 33.00
150 41.40 36.63 32.86
200 41.86 36.70 33.46

P3 - 41.53 37.03 33.4

Table 4: Ablating on the number of backbone fine-
tuning epochs with P2 while adapting from Cifar10-1× to
Cifar100-{100, 200, 400}×. Coinciding the freezing of the
backbone with the loss re-weighting at epoch 100 typi-
cally outperforms the baseline. Generally more fine-tuning
epochs are better. Results averaged over three seeds.

datasetDt. One may wonder, can the backbone be frozen af-
ter the loss re-weighting is applied? The intuition being that
re-weighting mainly helps adapt the classification bound-
ary while negatively affecting the representation learned by
the backbone (Kang et al. 2019). To answer this, Table 4
presents an ablation on the number of epochs spent on fine-
tuning the NAS backbone with P2. Observe that too few
fine-tuning epochs (e.g. 50) leads to low sub-net accuracy.
At the other end, fine-tuning for 100 epochs is sufficient to
improve the sub-net accuracy beyond the paragon (P3). This
means that one could further lower the compute burden of P2
by freezing the backbone once loss re-weighting is applied
at epoch 100.

Training the NAS super-net with loss re-weighting. We
observe that loss re-weighting generally results in improved
super-net accuracy on imbalanced datasets. Does this mean
the resulting sub-nets are better than the ones obtained from
a super-net trained without loss re-weighting? We answer
this question we train super-nets on Cifar100-100x with and
without re-weighting. Then we search and train the best sub-
nets which are presented in Table. 5. We find that there is no
clear winner among the two NAS training approaches.

Dissecting the overall accuracy improvement. To analyze
which classes contribute to an increase accuracy, Table. 6

Train Loss Imbalance Ratio

100× 200× 400×
CE 41.36 37.5 33.9
CE-DRW 41.53 37.0 33.4

Table 5: Ablating on the loss used to train the NAS super-
net on Cifar100-100×. Results presented are the valida-
tion accuracy of optimal sub-networks searched from cor-
responding super-networks. It is inconclusive if training the
NAS super-net with re-weighted loss (CE-DRW) induces
better sub-networks. Results averaged over three seeds.

Adj Imbalance Ratio
100× 400×

High Med Low All High Med Low All

P0 64.1 40.4 14.1 40.8 65.0 39.1 10.1 32.8
P1 65.2 41.6 15.0 41.9 66.3 41.0 10.2 33.7
P2 65.2 40.9 15.7 41.8 66.2 40.3 10.2 33.4
P3 65.0 41.5 14.1 41.5 66.2 39.5 10.5 33.4

Table 6: Dissecting the overall accuracy on Cifar100-
{100, 400}× into the accuracy on classes containing many
(i.e. > 100), medium (i.e. between 20-100) and few (i.e.
< 20) examples per class. Sub-networks obtained via P1
and P2 outperform the baseline (P0) for all class categories
(shaded yellow). Results averaged over three seeds.

dissects the overall accuracy (denoted by column “All”)
into the accuracy obtained on classes containing Many (i.e.
> 100), Medium (i.e. between 20-100) and Few (i.e. < 20)
examples per class. For both 100× and 400× levels of im-
balance, the architectures obtained via P1 and P2 outperform
those obtained by P0 for all class categories. This means
that indeed the architectures obtained via P1,P2 are able to
learn better representations.

5 Conclusion
This work aims to improve performance on class imbalanced
datasets by optimising the backbone architecture. Towards
this goal, we discover that an architecture’s performance
on balanced datasets is not indicative if its performance
on imbalanced ones. This observation suggests re-running
NAS on each target dataset. To overcome the prohibitive
compute burden or re-running NAS, we propose to adapt a
NAS super-net trained on balanced datasets onto imbalanced
ones. We develop multiple adaptation procedures and find
that re-training the linear classification head while freezing
the NAS super-net backbone outperforms other adaptation
strategies both in terms of efficiency of the adaptation and
the accuracy of the resulting sub-networks.

References
Baker, B.; Gupta, O.; Naik, N.; and Raskar, R. 2016. Design-
ing neural network architectures using reinforcement learn-
ing. arXiv preprint arXiv:1611.02167.



Baker, B.; Gupta, O.; Raskar, R.; and Naik, N. 2017. Accel-
erating neural architecture search using performance predic-
tion. arXiv preprint arXiv:1705.10823.
Cao, K.; Wei, C.; Gaidon, A.; Arechiga, N.; and Ma,
T. 2019. Learning Imbalanced Datasets with Label-
Distribution-Aware Margin Loss. In Advances in Neural In-
formation Processing Systems.
Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; and Kegelmeyer,
W. P. 2002. SMOTE: synthetic minority over-sampling tech-
nique. Journal of artificial intelligence research, 16: 321–
357.
Chu, P.; Bian, X.; Liu, S.; and Ling, H. 2020. Feature space
augmentation for long-tailed data. In European Conference
on Computer Vision, 694–710. Springer.
Cui, Y.; Jia, M.; Lin, T.-Y.; Song, Y.; and Belongie, S. 2019.
Class-balanced loss based on effective number of samples.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 9268–9277.
Dong, X.; Liu, L.; Musial, K.; and Gabrys, B. 2021. Nats-
bench: Benchmarking nas algorithms for architecture topol-
ogy and size. IEEE transactions on pattern analysis and
machine intelligence.
Duggal, R.; Freitas, S.; Dhamnani, S.; Chau, D. H.; and Sun,
J. 2020. Elf: An early-exiting framework for long-tailed
classification. arXiv preprint arXiv:2006.11979.
Duggal, R.; Freitas, S.; Dhamnani, S.; Chau, D. H.; and Sun,
J. 2021a. HAR: Hardness Aware Reweighting for Imbal-
anced Datasets. In 2021 IEEE International Conference on
Big Data (Big Data), 735–745. IEEE.
Duggal, R.; Zhou, H.; Yang, S.; Xiong, Y.; Xia, W.; Tu, Z.;
and Soatto, S. 2021b. Compatibility-aware heterogeneous
visual search. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 10723–10732.
Elsken, T.; Metzen, J. H.; and Hutter, F. 2019. Neural archi-
tecture search: A survey. The Journal of Machine Learning
Research, 20(1): 1997–2017.
Falkner, S.; Klein, A.; and Hutter, F. 2018. BOHB: Robust
and efficient hyperparameter optimization at scale. In In-
ternational Conference on Machine Learning, 1437–1446.
PMLR.
Guo, Z.; Zhang, X.; Mu, H.; Heng, W.; Liu, Z.; Wei, Y.;
and Sun, J. 2020. Single path one-shot neural architecture
search with uniform sampling. In European conference on
computer vision, 544–560. Springer.
He, H.; Bai, Y.; Garcia, E. A.; and Li, S. 2008. ADASYN:
Adaptive synthetic sampling approach for imbalanced learn-
ing. In 2008 IEEE international joint conference on neu-
ral networks (IEEE world congress on computational intel-
ligence), 1322–1328. IEEE.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.
Kang, B.; Xie, S.; Rohrbach, M.; Yan, Z.; Gordo, A.; Feng,
J.; and Kalantidis, Y. 2019. Decoupling representation
and classifier for long-tailed recognition. arXiv preprint
arXiv:1910.09217.

Liu, H.; Simonyan, K.; and Yang, Y. 2018. Darts: Differen-
tiable architecture search. arXiv preprint arXiv:1806.09055.
Liu, Z.; Miao, Z.; Zhan, X.; Wang, J.; Gong, B.; and Yu,
S. X. 2019. Large-scale long-tailed recognition in an open
world. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2537–2546.
Lu, Z.; Sreekumar, G.; Goodman, E.; Banzhaf, W.; Deb, K.;
and Boddeti, V. N. 2021. Neural architecture transfer. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
43(9): 2971–2989.
Menon, A. K.; Jayasumana, S.; Rawat, A. S.; Jain, H.; Veit,
A.; and Kumar, S. 2020. Long-tail learning via logit adjust-
ment. arXiv preprint arXiv:2007.07314.
Panda, R.; Merler, M.; Jaiswal, M. S.; Wu, H.; Ramakrish-
nan, K.; Finkler, U.; Chen, C.-F. R.; Cho, M.; Feris, R.;
Kung, D.; et al. 2021. Nastransfer: Analyzing architecture
transferability in large scale neural architecture search. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, 9294–9302.
Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y. L.;
Tan, J.; Le, Q. V.; and Kurakin, A. 2017. Large-scale evo-
lution of image classifiers. In International Conference on
Machine Learning, 2902–2911. PMLR.
Tian, J.; Liu, Y.-C.; Glaser, N.; Hsu, Y.-C.; and Kira, Z.
2020. Posterior re-calibration for imbalanced datasets.
Advances in Neural Information Processing Systems, 33:
8101–8113.
Wang, Y.-X.; Ramanan, D.; and Hebert, M. 2017. Learning
to model the tail. Advances in neural information processing
systems, 30.
Wu, T.-Y.; Morgado, P.; Wang, P.; Ho, C.-H.; and Vascon-
celos, N. 2020. Solving long-tailed recognition with deep
realistic taxonomic classifier. In European Conference on
Computer Vision, 171–189. Springer.
Yin, X.; Yu, X.; Sohn, K.; Liu, X.; and Chandraker, M. 2019.
Feature transfer learning for face recognition with under-
represented data. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 5704–
5713.
Zhang, S.; Li, Z.; Yan, S.; He, X.; and Sun, J. 2021a. Distri-
bution alignment: A unified framework for long-tail visual
recognition. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2361–2370.
Zhang, X.; Zhou, X.; Lin, M.; and Sun, J. 2018. Shufflenet:
An extremely efficient convolutional neural network for mo-
bile devices. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 6848–6856.
Zhang, Y.; Kang, B.; Hooi, B.; Yan, S.; and Feng, J.
2021b. Deep long-tailed learning: A survey. arXiv preprint
arXiv:2110.04596.
Zhou, B.; Cui, Q.; Wei, X.-S.; and Chen, Z.-M. 2020. Bbn:
Bilateral-branch network with cumulative learning for long-
tailed visual recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
9719–9728.



Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V.
2018. Learning transferable architectures for scalable im-
age recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 8697–8710.


	1 Introduction
	2 Related Works
	2.1 Overcoming long tail class imbalance
	2.2 Neural architecture search
	2.3 Architecture transfer

	3 Methodology
	3.1 Notation
	3.2 Architecture ranking transfer: A motivating experiment
	3.3 Revisiting neural architecture search
	3.4 Rank adaptation procedures

	4 Experiments
	4.1 Implementation details
	4.2 Baseline and Paragon for IMB-NAS
	4.3 Dissecting the performance adaptation

	5 Conclusion

