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Abstract

Adversarial Training is the most effective approach for
improving the robustness of Deep Neural Networks (DNNs).
However, compared to the large body of research in optimiz-
ing the adversarial training process, there are few investi-
gations into how architecture components affect robustness,
and they rarely constrain model capacity. Thus, it is unclear
where robustness precisely comes from. In this work, we
present the first large-scale systematic study on the robust-
ness of DNN architecture components under fixed parame-
ter budgets. Through our investigation, we distill 18 action-
able robust network design guidelines that empower model
developers to gain deep insights. We demonstrate these
guidelines’ effectiveness by introducing the novel Robust
Architecture (RobArch) model that instantiates the guide-
lines to build a family of top-performing models across
parameter capacities against strong adversarial attacks.
RobArch achieves the new state-of-the-art AutoAttack accu-
racy on the RobustBench ImageNet leaderboard. The code
is available at https://github.com/ShengYun-Peng/RobArch.

1. Introduction

Deep Neural Networks (DNNs) are vulnerable to adver-
sarial attacks [6,17,29,32,47]. Many defense methods have
been proposed to mitigate this pitfall [2,10,44,50,58,59,64],
and among them, Adversarial Training (AT) [36] is the most
effective way to defend against adversarial attacks. Com-
pared to the large body of research devoted to improving
the loss function [23, 31] and optimizing the AT proce-
dure [14, 54, 64], few studies investigate how architectural
components affect robustness despite its importance.

Yet DNN architectures have been dominating general-
ization improvements [16, 19, 34]. Recent research has
started to highlight the potential significant impact architec-
ture choices could have on robustness [13, 46], and showed
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Figure 1. Our RobArch model family outperforms the SOTA
XCiT family on RobustBench ImageNet leaderboard [7]. Every
RobArch model outperforms its XCiT counterparts at a similar
capacity. RobArch-S outperforms ResNet-50 by 9.18 percentage
points, and is even more robust than WideResNet50-2 despite hav-
ing 2.6× fewer parameters. The robustness continues to increase
as capacity increases. RobArch-L achieves the new SOTA AA ac-
curacy on RobustBench. Table 3 presents accuracy details.

that adjusting widths [55] or depths [26] could robustify a
network.

However, those studies did not constrain the model ca-
pacity, making it hard to attribute the robustness gains to
those adjustments, because increasing model capacity alone
could already improve robustness [26, 36]. Thus, control-
ling for model capacity while assessing robustness is im-
portant, and recent research has provided supporting evi-
dence. For example, despite the popular belief that trans-
former models might be more robust than CNNs [5, 42],
Bai et al. [3] demonstrated that Data-efficient image Trans-
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formers (DeiT) [49] and ResNet [19] with Gaussian Error
Linear Unit (GELU) activations [21] attained comparable
robustness if the model scales were balanced. Therefore, it
remains unclear how these previously studied architectural
components precisely affect robustness. Our research filled
this critical research gap by making three key contributions:
• The first large-scale systematic study on the robust-

ness of DNN architecture components. To the best of
our knowledge, our work is the first to comprehensively
investigate and compare the robustness impacts of a wide
range of architecture components on a large dataset such
as ImageNet. Advancing over prior work, we carefully
constrain the parameter budget to isolate and hone in on
the benefit of each component. Such a systematic study
enables us to discover a family of new architectures that
outperform state-of-the-art (SOTA) networks. (Figure 1).

• 18 actionable robust network design guidelines.
Our systematic investigation for component robustness,
through training over 150 models on ImageNet [12], en-
ables us to distill 18 generalizable, actionable guidelines
that empower model developers to gain deep insights and
design networks with higher robustness. The guidelines
present significant new knowledge and discoveries for our
computer vision community. For example, we have dis-
covered (1) deepening a network is more effective than
widening it, and there is a sweet spot; (2) specific mod-
ifications such as adding Squeeze and Excitation (SE)
block, removing the first normalization layer in a block,
and reducing the downsampling factor in the stem stage
effectively boosts robustness; and (3) architecture designs
that harm robustness include inverted bottleneck, large di-
lation factor, Instance Normalization (IN), parametric ac-
tivation functions [9], and reducing activation layers.

• Top performance against strong adversarial attacks.
We demonstrate our guidelines’ effectiveness by intro-
ducing the novel Robust Architecture (RobArch) model
that instantiates the guidelines to build a family of top-
performing models across parameter capacities against
strong adversarial attacks. In particular, we compare our
RobArch family with the Cross-Covariance Image Trans-
formers (XCiT) family [1] that is the SOTA on Robust-
Bench [7]. Every RobArch model outperform its XCiT
counterpart with a similar model capacity (Figure 1).
RobArch-S surpasses ResNet-50’s AutoAttack (AA) ac-
curacy by 9.18 percentage points, and is even more robust
than WideResNet50-2 despite having 2.6× fewer param-
eters. The robustness continues to increase as capacity
increases. RobArch-L achieves the new SOTA AutoAt-
tack (AA) [8] accuracy on the RobustBench ImageNet
leaderboard. RobArch’s performance advantage extrap-
olates to the Projected Gradient Descent (PGD) attack.
Overall, the proposed RobArchs outperform both Con-
vNets and Transformers with similar total parameters.

2. Robust Architecture Design
We carefully select architectural components from off-

the-shelf DNNs (ResNet [19], RegNet [40], DenseNet [25],
and ConvNeXt [34]) that improve generalization accuracy.
Based on the commonalities in these network designs, we
group the components into three modification categories:
• Network-level: depth, width
• Stage-level: stem stage, dense connection
• Block-level: kernel size, dilation, activation, SE, nor-

malization
Since ResNet [19] is a milestone in the history of DNN
architecture, we choose its most popular instantiation,
ResNet-50 (∼26M parameters) as the base architecture,
which consists of a stem stage, n = 4 body stages, and a
classifier head, as our starting point. Each body stage con-
tains multiple residual blocks with various depth and width
configurations. Appendix A provides details of ResNet-50
configurations.

Notation and symbols used throughout this paper.
• We denote D-d1-...-dn as the depth of each stage in an
n-stage network (n ∈ {3, 4, 5, 6}).

• For stage i, wi and wbi are the numbers of channels in the
pointwise and non-pointwise convolutions, respectively.

• Bottleneck multiplier bi is the ratio of channels in point-
wise to non-pointwise convolution, bi = wi/wbi .

• Assuming wgi is the group convolution width, gi is the
total number of groups in the non-pointwise convolution
layer: gi = ⌊wbi/wgi⌉ = ⌊wi/ (bi × wgi)⌉.

• Width expansion ratio is e = wi+1/wi, i ≤ n− 1.
• We use W -w1-...-wn, G-g1-...-gn, BM -b1-...-bn to rep-

resent the number of channels, group convolution groups,
and bottleneck multiplier in an n-stage network.

Experimental settings. We train all models on Ima-
geNet [12] with the recipes specified in Sec. 2.1. When
studying a single architecture component (Sec. 2.2 - 2.4)
and building cumulative networks (Sec. 3.1 & 3.2), we
use 10-step PGD (PGD10) with different attack budgets
ϵ (ϵ ∈ {2, 4, 8}) for fast evaluations. After finalizing the
model structures of the RobArch, we test all RobArchs
against PGD100 and AA. All attacks are ℓ∞ bounded.
To control for the effect of model capacity, we constrain
the networks’ total parameters, i.e., similar to ResNet-50
(∼26M), throughout the exploration.

2.1. Training Techniques

Standard-AT. Adversarial Training (AT) is the most reli-
able defense to obtain robust DNNs [17, 36]. Standard-AT
is formulated as a min-max optimization framework [36].
Given a network fθ parameterized by θ, a dataset with sam-
ples (xi, yi), and a loss function L, the robust optimization
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Figure 2. For network-level design, following guideline 2 to increase depth and decrease width in a 4-stage network provides optimal
robustness. We study (a) how the number of stages affects accuracies, (b) stage depth settings, and (c) depth-width trade-off. We only
plot the first three stages of a 4-stage network in (c) for better visualization since the last stage is much shallower as per the optimal depth
configurations in guideline 2. These observations also apply to other PGD attack budgets, as shown in Appendix D.

problem is formulated as:

argmin
θ

E(xi,yi)∼D

[
max
x′

L (fθ, x
′, y)

]
, (1)

The inner adversarial example x′ is generated on the fly dur-
ing the training process, which aims to find an adversarial
perturbation of a given data point x that achieves a high loss,

x′
k+1 =

∏
x+∆

(x′
k + αsgn (∇xL(θ, x′

k, y))) . (2)

sgn(·) is the sign function, α is the step size, x′
k is the ad-

versarial example generated after k steps (1 ≤ k ≤ K),
∆ = {δ : ∥δ∥∞ ≤ ϵ} is the threat mode, and

∏
x+∆ is a

projection operation that clips the perturbation back to the
ϵ-ball centered on x if it goes beyond the attack budget.
Fast-AT. Fast-AT speeds up the Standard-AT and can ro-
bustify a ResNet-50 in under 13 hours [54]. It not only
adopts Fast Gradient Sign Method (FGSM) [17] to gener-
ate adversarial samples during the training but also incorpo-
rates a cyclic learning rate [43] and mixed-precision arith-
metic [37] to fully accelerate the AT with just 15 epochs. A
line of research improves the performance and mitigates the
catastrophic overfitting problem discovered in the Fast-AT,
e.g., YOPO [63], GradAlign [2], GAT [45], Sub-AT [30],
etc., but there are limited explorations on whether these
recipes are compatible with the full ImageNet [12].

Although Fast-AT provides competitive PGD results, its
resulting robustness on ResNet-50 is inferior to that of
Standard-AT’s as per the AA accuracy on the RobustBench
leaderboard [7]. Therefore, we use Fast-AT as a rapid in-
dicator while exploring different architecture components
and building the RobArch family, and use Standard-AT to
robustify all members in the RobArch family.

2.2. Network-level Design

Depth. In the standard ResNet-50 (D-3-4-6-3), each stage
downsamples the input features by 2. The downsampling
in the first stage is replaced by a max-pooling layer in the
stem stage. We sample 36 architectures based on the depth
relationship between each pair of stages, i.e., di ≤ di+1

and di > di+1. The widths in all stages are the same as
ResNet-50, and when n > 4, we reuse the width in stage
4. For n = 6, even setting di = 1, i ≤ n leads to 1.83M
more parameters than ResNet-50. Hence, there is only 1
data point for the 6-stage network, and we do not continue
increasing the total stages. Fig. 2a shows the results af-
ter AT. 4-stage networks attain top natural and adversarial
accuracies at much lower GMACs than 3-stage networks.
5-stage and 6-stage networks are significantly less robust.
These results are expected since shallow stages, in general,
compute on higher resolutions, and the depth of a 3-stage
network in shallow stages is deeper than a 4-stage network
by a large margin for similar total parameters. Hence, we
select 4-stage networks and further explore the depth rela-
tionship between stages.

Huang et al. [26] found that reducing depth in the last
stage of a 3-stage WideResNet34-10 improves robustness.
Upon further inspection of our 4-stage models, we observe
that increasing the stage depths di along with i, then sig-
nificantly decreasing the depth in the last stage, leads to
higher robustness. Fig. 2b shows that following such a rule
(d1 < d2 < d3 > c × d4) leads to a higher accuracy than
not following it. We set c = 3 and leave the finetuning of
a larger c to further research. RegNet [40] first discovered
the depth pattern and applied it to improve benign accuracy.
Our results extend this discovery to adversarial settings and
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show that it helps robustify architectures without incurring
extra parameters. Overall, we found the optimal stage depth
ratio is D-5-8-13-1 and listed its performance in Table 1 row
2.

Guideline 1: 3-stage ≈ 4-stage > 5-stage ≫ 6-stage
network in terms of robustness.

Guideline 2: For a 4-stage network, set d1 < d2 <
d3 ≫ dn, and D-5-8-13-1 provides the optimal robustness.

Width. Factors that affect the stage width are pointwise
convolution channels wi, group convolution groups gi, and
bottleneck multiplier bi. The width configurations of the
standard ResNet-50 are W -256-512-1024-2048, G-1-1-1-1,
BM -0.25-0.25-0.25-0.25. Unless otherwise specified, all
configurations are kept consistent with ResNet-50 when
studying one of the factors.

For bi ∈ {0.125, 0.25, 0.5, 1, 2, 4}, we first test a con-
stant bi = b in all stages. The accuracy reaches the peak
when b = 0.25 or 0.5 and significantly decreases when in-
creasing b from 0.5 to 4, which shows the inverted bottle-
neck is harmful to robustness. b = 0.25 (ResNet-50) has
higher natural and PGD10-2 accuracy, while b = 0.5 has
higher PGD10-4 and PGD10-8 accuracy. Both results are
shown in Table 1 (rows 1 and 3). Then, we vary bi for dif-
ferent stages, b1,2 < b3,4 and b1,2 > b3,4. The robustness
of BM -0.25-0.25-2-2 is better than bi = 2 but worse than
bi = 0.25. Surprisingly, BM -4-4-0.25-0.25 outperforms
both bi = 0.25 and bi = 4. We further combine the two op-
timal bottleneck multipliers and set b1,2 = 0.5, b3,4 = 0.25.
As shown in Table 1 row 4, this setting attains higher accu-
racy than both bi = 0.5 and 0.25.

Next, we study the group convolution groups gi ∈
{1, 2, 4, 8, 16, wbi}. gi = wbi is equivalent to the depth con-
volution. The pointwise convolution width wi is adjusted to
reach the controlled parameter budget, but bi is always 0.25.
For a constant gi = g, we observe a significant increase
from g = 1 (ResNet-50) to g = 2, but then the accuracy
gradually decreases if we continue to increase g. Similar
to the bottleneck multiplier study, we vary gi for different
stages. However, there is no further robustness gain. We list
the results of g = 2 in Table 1 row 5.

For the width expansion ratio, we evaluate e ∈
{1, 1.5, 2, 2.5, 3}. The robustness rises and saturates at
e = 1.5 and falls for a larger e. We show e = 1.5 in Ta-
ble 1 row 6. Finally, we combine the optimal configurations
for all three factors, i.e., b1,2 = 0.5, b3,4 = 0.25, gi = g =
2, e = 1.5. However, the robustness is inferior to that of just
using the individual optimal settings. After a close look at
all the results, we find setting a constant bi = b = 0.25
works favorably with g and e. In addition, we observe
g = 2, e = 2 and g = 1, e = 1.5 achieve the best two ac-
curacies. The phenomenon also demonstrates that directly
combining multiple individual optimal architectural settings
does not transfer to a better model.

Guideline 3: Inverted bottleneck harms robustness, es-
pecially when added to deeper stages.

Guideline 4: For a single modification, b1,2 =
0.5, b3,4 = 0.25, gi = 2, and e = 1.5 all show promising
improvements. However, merging all three configurations
makes the model less robust, and the optimal width config-
urations are e = 2, g = 2 or e = 1.5, g = 1 with b = 0.25.

Combining Depth and Width. In this part, we answer the
following question: Under a fixed model capacity, does in-
creasing widths while decreasing depths, or vice versa, im-
prove robustness?

We use the optimal depth ratio, D-5-8-13-1. To provide a
more general understanding and avoid overfitting to specific
optimal settings, we cross-select e = 1.5, g = 2, b = 0.25
from the two optimal width configurations from guideline
4. We proportionally adjust depths and widths to accom-
modate the fixed budget. Fig. 2c displays the relation-
ship between depths and widths using PGD10 accuracy. A
larger bubble size means higher accuracy. The results show
that increasing depth while decreasing width improves ro-
bustness in all stages. It is important to note that if we
continue the trend, catastrophic overfitting [2] occurs dur-
ing training. Since catastrophic overfitting drastically de-
creases the robustness, we should deepen the network but
balance the depth and the width to stabilize the AT pro-
cess. Comparing the top 2 models (dotted lines), both
PGD10-2 and PGD10-4 accuracies of the deeper model are
0.10pp (percentage points) higher, but the PGD10-8 accu-
racy is 0.49pp lower, which is a sign of unstable training.
Overall, D-5-8-13-1 is selected as the starting point of our
cumulative model in Sec. 3.1. Compared to ResNet-50
(D-3-4-6-3), D-5-8-13-1 is much deeper and slimmer with
significantly higher robustness: ↑ 1.15pp for natural accu-
racy, ↑ 2.03pp for PGD10-2, ↑ 2.62pp for PGD10-4, and
↑ 2.75pp for PGD10-8. We observe a similar depth-width
relationship when scaling up the model in Sec. 3.2.

Guideline 5: Under a fixed model capacity, first increase
the network depth proportionally to the optimal depth until
catastrophic overfitting happens, i.e., a sudden drop in loss
and increase in training accuracy. The width is adjusted to
fill the total parameter budget.

2.3. Stage-level Design

Stem Stage. The stem stage in a standard ResNet-50 con-
sists of a convolution layer and a max-pooling layer, each
of which has a downsampling factor of 2. All 4 tandemly-
connected body stages downsample the input resolution by
2 except the first stage. The convolution layer uses a 7 × 7
kernel and outputs 64-layer features.

In the stem stage, we modify the following architec-
tural components: channel width, kernel size, “patchify”
stem, and downsampling factor. First, we test channel width
∈ {32, 64, 96} and kernel size ∈ {3, 5, 7}. With less than
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Table 1. PGD10 robustness of architecture components. All con-
figurations trained with Fast-AT and evaluated on full ImageNet
validation set. We provide ResNet-50 as baseline. Appendix D
shows detailed results, including PGD10-2 and PGD10-8.

Idx. Configurations Natural PGD10-4

1 ResNet-50 56.09% 30.43%

Network-level Design

2 D-5-8-13-1 57.35% 33.33%
3 BM -0.5-0.5-0.5-0.5 55.31% 30.52%
4 BM -0.5-0.5-0.25-0.25 56.11% 31.26%
5 G-2-2-2-2 57.31% 32.09%
6 W -512-768-1152-1728 57.17% 32.04%

7
G-2-2-2-2

56.64% 31.04%BM -05-05-025-025
W -512-768-1152-1728

Stage-level Design

8 Stem width 96 57.29% 32.06%
9 Move down (↓) downsampling 57.08% 33.08%

10 Dense ratio 2 55.93% 30.73%

Block-level Design

11 Kernel size 5 56.73% 32.77%
12 Kernel size 7 59.70% 34.67%
13 Dilation 2 52.98% 28.38%
14 Dilation 3 52.10% 27.97%
15 Act. GELU 57.48% 33.12%
16 Act. SiLU 58.19% 34.07%
17 Act. PSiLU 56.38% 33.76%
18 SE (ReLU) 57.83% 32.64%
19 Norm-BN-BN-0 54.15% 29.59%
20 Norm-BN-0-BN 56.04% 31.34%
21 Norm-0-BN-BN 56.18% 31.61%

0.01M increase in total parameters, switching convolution
layer width from 32 to 64 and 64 to 96 improve the PGD10-
4 accuracy by 0.7 and 1.65 percentage points, respectively.
The “stem width 96” is located in Table 1 row 8. For kernel
size = 3 or = 5, the training overfits to FGSM and leads
to a completely non-robust model. The original kernel size
is 7 in ResNet-50, and increasing it to 9 improves the PGD
accuracy but leads to a drop in the natural accuracy.

We study the downsampling factor next. RegNet [40]
is built based on ResNet, but the max-pooling layer in the
stem stage is replaced by a stride 2 convolution shortcut
connection in the first stage. We denote this operation as
“move down (↓) downsampling.” The evaluation result (Ta-
ble 1 row 9) manifests 0.99 and 2.65 percentage points in-
crements in natural and PGD10-4 accuracy. We further dis-
assemble the operation by only discarding the max-pooling
layer without adding the stride 2 convolution shortcut. Al-
though the robustness is slightly lower than “move ↓ down-
sampling,” it still outperforms ResNet-50 by a large margin.

Vision Transformer (ViT) [16] first introduced the
“patchify stem,” and ConvNeXt [34] also incorporated the
design to improve generalization. Motivated by those
works, we replace the original stem with a 4× 4 patch, i.e.,
kernel size = stride = 4, and observe a slight increment
in robustness. Since moving down the downsampling layer
boosts robustness, we continue to test a smaller 2×2 patch.
The accuracy increases as expected, but the gain is slightly
lower than directly moving down the downsampling layer in
a ResNet-style stem. Since a small kernel size in the early
convolution layer leads to a smaller receptive field, a mod-
erate kernel size of 7 × 7 is preferred. Overall, we select
“stem width 96” and “move ↓ downsampling” as potential
candidates while building the cumulative model in Sec. 3.1.

Guideline 6: Replacing the max-pooling in the stem
stage with a downsampling shortcut in the first stage sig-
nificantly improves robustness.

Guideline 7: For the convolution layer in the stem
stage, directly replacing it with a “patchify” stem design
contributes to the robustness. However, the optimal con-
figurations are increasing the channel width and setting
kernel size = 7.

Dense Connection. Huang et al. [25] introduced the dense
connection in DenseNet that concatenates the feature maps
of all preceding blocks within the stage as the input to the
current block. We extend the definition and experiment
with different dense ratios i (i ∈ {1, 2, 3, 4, 5}), i.e., i pre-
ceding feature maps are used to construct the input. Only
i = 2 shows minor improvements in PGD accuracy, and
no strong benefits are observed (Table 1 row 10). We fur-
ther remove the last Rectified Linear Unit (ReLU) since the
original DenseNet uses the Pre-Activation (PreAct) opera-
tion [20]. However, the robustness is further degraded, and
we assume the poor performance of reducing the last acti-
vation itself (discussed in 2.4) is a potential reason.

Guideline 8: Dense connection is not beneficial to ro-
bustness.

2.4. Block-level Design

Kernel Size. In this part, we study the kernel size in all
body stages. Inspired by the large local window size in
Swin-T [33], ConvNeXt [34] boosts the generalization ac-
curacy via increasing the kernel size from 3 × 3 to 7 × 7.
A large kernel size can extract more semantic informa-
tion but implicitly increases the attack area during back-
propagation. It is unclear whether a larger kernel size can
bring higher robustness. We evaluate kernel size ∈ {3, 5, 7}
and find the accuracy grows along with the kernel size (Ta-
ble 1 row 1, 11 and 12), but the total parameters also in-
crease significantly: kernel = 3 (25.56M), kernel = 5
(45.68M), and kernel = 7 (75.86M). Thus, using a large
kernel size is a potential candidate to optimize the robust-
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ness when scaling up the model. We will revisit the design
in Sec. 3.2.

Guideline 9: Purely increasing the kernel size raises the
model capacity but improves robustness significantly. Thus,
it is a prospective option when scaling up the network.
Dilation. Dilated convolution supports the exponential ex-
pansion of the receptive field without loss of resolution [62].
The operation offers a wider field of view at a similar com-
putational cost. However, the results in Table 1 (row 1, 13
and 14) show that a larger dilation factor significantly de-
creases both natural and PGD accuracy after AT. Connect-
ing to the previous kernel size section, we hypothesize that a
larger receptive field facilitates the attacker. We still observe
the robustness gain in using a large kernel size because the
huge model capacity mitigates the effect, yet the accuracy
drops when adjusting dilation since the operation does not
change the model capacity. In Sec. 3.2, we also notice the
kernel size is not effective in optimizing robustness if all
other modifications are considered at the same scale.

Guideline 10: Increasing dilation factor enlarges the at-
tacking area, which leads to inferior robustness.
Activation. We study two factors in the activation layer:
the activation function and the number of activation layers
in a block. For the activation function, we replace ReLU,
which is used in ResNet-50, with two smoother functions,
GELU and Sigmoid Linear Unit (SiLU). GELU alone sig-
nificantly improves the robustness (Table 1 row 15), which
echoes the result in [3]. SiLU further improves the accu-
racy (Table 1 row 16), which echoes the result in [57]. Re-
cently, Dai et al. [9] added learnable parameters to origi-
nal non-parametric functions, and proposed the parametric
counterparts, e.g., ReLU to Parametric ReLU (PReLU) and
SiLU to Parametric SiLU (PSiLU) or Parametric Shifted
SiLU (PSSiLU). These parametric functions outperform
the non-parametric ones on CIFAR-10 [28]. We test these
functions on ImageNet and observed PSiLU has the high-
est robustness among all parametric functions, as shown in
Table 1 row 17. However, compared to the non-parametric
versions, all parametric functions are less robust. Since the
original paper only tested on the small-scale dataset, we be-
lieve such learnable functions are not compatible with the
large-scale dataset. Next, we reduce the activation layers in
each block. Neither reducing one nor reducing two activa-
tion layers show extra benefits to the robustness. The more
activation layer we reduce, the worse the performance is.

Guideline 11: Activation function significantly affects
robustness. The non-parametric SiLU provides a competi-
tive improvement.

Guideline 12: Reducing activation layers in a residual
block severely hurts the robustness.
Squeeze and Excitation (SE). Hu et al. [24] first
introduced the SE block that explicitly explored inter-
dependencies between channels, and adaptively recali-

brated channel-wise feature responses. Inspired by RegNet
[40], we place the SE block between the last two convolu-
tions in each block and set the reduction ratio as 1/4. Com-
pared to ResNet-50, Table 1 row 18 shows that adding SE
significantly improves the robustness. Directly adding the
SE module slightly increases the model capacity by 2.17M,
but in Sec. 3.1, we show that sacrificing the parameters in
other components by adopting the SE module can still im-
prove the robustness, which proves the effectiveness of SE.

Since switching activation functions shows significant
differences, we also replace ReLU in the SE block with
SiLU, GELU and their parametric versions. We still ob-
serve that non-parametric activation functions are better
than their parametric counterparts. The SiLU is again the
optimal activation for SE module. However, in Sec. 3.1,
we find that replacing the activation function in activation
layers and SE at the same time causes inferior robustness.

Guideline 13: The SE module significantly contributes
to robustness.

Guideline 14: The robustness improves if we just replace
the activation function in the SE block. But the modification
does not work favorably with switching the activation func-
tion in the residual block.

Normalization. Similar to the activation layer, we exam-
ine both normalization functions and the number of nor-
malization layers in a block. For the normalization func-
tion, we switch the original Batch Normalization (BN) [27]
in ResNet-50 to IN [51]. The training is extremely hard to
converge and thus leading to an almost non-robust model
(PGD10-4: 8.54%). Then, we attempt to reduce the total
normalization layers in a residual block. In Table 1, row 19
to 21 show that reducing the first normalization layer in a
residual block optimizes the robustness. We keep reducing
2 BNs, and no further benefits are observed.

Guideline 15: Switching BN to IN harms robustness.
Guideline 16: Reducing the first BN in a residual block

benefits robustness.

3. Experiments
In this section, we provide a roadmap that outlines the

path we take to construct the RobArch using the guidelines
in Sec. 2. Our roadmap combines architecture components
such that for each combination we only keep components
that increase robustness. Then, we scale up the resulting
model and proposed a family of RobArch models. Finally,
we compare RobArch with other SOTA architectures. See
Appendix B for the full experimental setup. We also ablate
Fast-AT and Standard-AT in Appendix C.

3.1. A Roadmap from ResNet-50 to RobArch-S

In this section, we cumulatively construct RobArch-S
from ResNet-50 based on the proposed guidelines. Table
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Table 2. The roadmap outlines the path we take to cumula-
tively improve the robustness and construct RobArch-S (∼26M),
RobArch-M (∼46M), and RobArch-L (∼104M) based on our
guidelines. PGD10-2 and PGD10-8 show a similar trend of ac-
curacy improvement as PGD10-4, and detailed results are shown
in Appendix E.

Configurations Natural PGD10-4

Small: ResNet-50 → RobArch-S (S7)

S0 ResNet-50 56.09% 30.43%
S1 S0 + D-5-8-13-1 57.35% 33.33%
S2a S1 + g = 2, e = 2, b = 0.25 57.98% 33.94%
S2b S1 + g = 1, e = 1.5, b = 0.25 57.52% 32.83%

S3
S2a + Stem width 96

57.82% 34.86%
+ Move down (↓) downsampling

S4 S3 + SE (ReLU) 60.57% 36.61%
S5 S4 + Act. SiLU 62.04% 39.48%
S6 S5 + SE (SiLU) 60.32% 38.24%
S7 S5 + Norm-0-BN-BN 62.27% 39.88%

Medium: RobArch-S (S7) → RobArch-M (M2)

M1 S7 + Kernel size 5 63.82% 41.00%
M2 S7 + D-7-11-18-1 64.40% 42.06%
M3 S7 + W -384-760-1504-2944 63.52% 41.43%

Large: RobArch-M (M2) → RobArch-L (L2)

L1 M2 + Kernel size 7 64.08% 40.70%
L2 M2 + W -512-1024-2016-4032 66.08% 43.81%
L3 M2 + D-8-13-21-2 64.91% 43.09%
L4 M2 + D-10-16-26-2 65.28% 42.85%

2 (upper) presents the procedures and results at each step
of network modification. We start with network depth and
width. Combining guideline 2 and guideline 5, model S1

selects the optimal depth configuration D-5-8-13-1. For
width, we test the two optimal width configurations in
guideline 4 and select g = 2, e = 2 (S2a). For the stem
stage, model S3 increases the width to 96 and replace the
max-pooling in the stem stage with a downsampling short-
cut in the first stage according to guidelines 6 and 7. Then,
we optimize the block settings in each stage. Guideline 13
suggests inserting a SE block between the last 2 convolu-
tions. To accommodate the extra parameters in the modi-
fication, we reduce the width in all stages and build model
S4. Next, S5 substitutes SiLU for ReLU in all 3 activation
layers. However, we find that continuing to replace the acti-
vation function in the SE block lowers the robustness. Thus,
we discard the modification, reduce the first BN layer, and
construct S7. The resulting model is named RobArch-S.
The guidelines are verified by the consistent increase in ro-
bustness along the network construction process. The total
model capacity is comparable to ResNet-50, but both natu-
ral and PGD-4 accuracies have increased by 6.18 and 9.45
percentage points, respectively.

40 45 50 55 60 65
Natural Accuracy

20

25

30

35

40

45 PGD10-4
Accuracy

All networks trained with Fast-AT
RobArch Outperforms SOTA Architectures

ResNet-18 (12M)

ResNet-50 (26M)

ResNet-101 (45M)

ResNet-152 (60M)
WideResNet50-2 (69M)

WideResNet101-2 (127M)

EfficientNet-B0 (5M)

EfficientNet-B5 (30M)
EfficientNetV2-S (21M)

DenseNet-121 (8M)

DenseNet-161 (29M)

MobileNet V2 (4M)

ResNeXt-50 32x4d (25M)

RegNetY-3.2GF (19M)

RegNetY-8GF (39M)

RegNetX-3.2GF (15M)

RegNetX-8GF (40M)

Swin-T (28M)

RobArch-S (26M)

RobArch-M (46M)

RobArch-L (104M)

Figure 3. Our RobArch model family outperforms SOTA archi-
tectures under the same Fast-AT training method. With a simi-
lar model capacity, RobArch-S outperforms ResNet-50 [19] and
ResNeXt-50 32×4d [61] by 9.45 and 6.80 percentage points, re-
spectively. RobArch-M outperforms ResNet-101 by 8.16 per-
centage points. Compared to the models with larger parameters,
RobArch-S is even more robust than WideResNet101-2 despite
having 4.85× fewer parameters (highlighted in black). Appendix
E shows detailed results, including other PGD attack budgets.

3.2. Scaling Up: The RobArch Family

We extend our investigation to optimize the robustness
when scaling up the parameter budget. The budgets align
with the XCiT [1] family since it is the current SOTA on
the RobustBench ImageNet leaderboard [7]. Guideline 9
suggests increasing kernel size as a potential improvement
when scaling up the model. Increasing total depth and
width are another 2 promising directions [26, 60]. For the
medium-sized budget (∼46M), model M1 enlarges the ker-
nel size from 3 to 5, model M2 proportionally deepens
the network by a factor of 1.4, and model M3 widens the
channels while keeping the depth same as RobArch-S. The
training results of M1, M2 and M3 are shown in Table
2 (middle). In general, all three models are more robust
than RobArch-S. But in terms of accuracy, increasing depth
(M2) > increasing width (M3) > increasing kernel size
(M1). Therefore, we set M2 as RobArch-M.

For the large-sized budget (∼104M), model L1 increases
the kernel size from 3 to 7, but leads to a drop in robustness,
as shown in Table 2 (bottom). RobArch-M increases the
depth of S7, and according to the depth-width trade-off in
Fig. 2c, consistently increasing the depth can lead to un-
stable training. Therefore, model L2 increases the width
in RobArch-M, and the robustness rises by a large margin.
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Table 3. Our RobArch model outperforms ConvNets and Trans-
formers with similar total parameters against ℓ∞ = 4/255 AA.
Using the same training configurations as Salman et al. [41], our
model outperforms both ResNet-50 and WideResNet50-2. Every
RobArch model outperforms its XCiT counterpart at a similar ca-
pacity. Appendix F.2 shows the detailed results including PGD100
for ϵ ∈ {2, 4, 8}.

Architecture #Param AutoAttack Natural

ResNet-18 [41] 12M 25.32% 52.49%
PoolFormer-M12 [11] 22M 34.72% 66.16%
DeiT-S [3] 22M 35.50% 66.50%
DeiT-S+DiffPure [39] 22M 43.18% 73.63%
ResNet-50 [41] 26M 34.96% 63.87%
ResNet-50+DiffPure [39] 26M 40.93% 67.79%
ResNet-50+GELU [3] 26M 35.51% 67.38%
XCiT-S12 [11] 26M 41.78% 72.34%
RobArch-S 26M 44.14% 70.17%

XCiT-M12 [11] 46M 45.24% 74.04%
RobArch-M 46M 46.26% 71.88%

WideResNet50-2 [41] 69M 38.14% 68.41%
WideResNet50-2

69M 44.39% 71.16%
+DiffPure [39]
Swin-B [38] 88M 38.61% 74.36%
XCiT-L12 [11] 104M 47.60% 73.76%
RobArch-L 104M 48.94% 73.44%

We further deepen L2 to explore whether guideline 5 holds
true when scaling up the model budget. L3 and L4 increase
the depth by 1.6× and 2× and reduce the width to fit the
total parameters. The results in Table 2 (bottom) show a
decline in accuracy along with an increase in depth. The
phenomenon extends guideline 5 that the depth-width rela-
tionship also applies to scaling up the models. Finally, we
set L2 as RobArch-L based on the above discussions, and
provide the following guidelines:

Guideline 17: When scaling up the model, increasing
the kernel size, depth, and width all contribute to the ro-
bustness. But proportionally increasing the optimal depth
configuration is most effective.

Guideline 18: There exists a saturation point for purely
increasing the depth to fill the parameter budget. We should
enlarge channel widths when such a degradation happens.

3.3. Results

In Fig. 3, we compare RobArch with a series of SOTA
architectures. All architectures are trained with Fast-AT
for a fair comparison, and we discover a similar trend for
PGD10-2, PGD10-4, and PGD10-8. Below we provide a
few observations based on PGD10-4 accuracy:
1) Under a similar model capacity, RobArch-S outper-
forms ResNet-50 [19] and ResNeXt-50 32×4d [61] by 9.45
and 6.80 percentage points, respectively. RobArch-M out-

performs ResNet-101 by 8.16 percentage points.
2) Compared to the models with larger parameters,
RobArch-S is even more robust than WideResNet101-2 de-
spite having 4.85× fewer parameters.
3) Increasing the total parameters in general leads to higher
robustness, and the natural accuracy is positively correlated
with the adversarial accuracy after AT. Lightweight mod-
els, e.g., MobileNet V2 and SqueezeNet-1.1, are among the
least robust. The accuracies of RobArchs consistently grow
when scaling up the model sizes.
4) Transformers, e.g., Swin-T [33], and Transformer-based
architectures, e.g., ConvNeXt-T [34], are non-robust us-
ing Fast-AT. The phenomenon can be attributed to the
differences in optimizers and learning rates, where most
Transformer-related architectures use AdamW [35] and tiny
learning rates.

As introduced in Sec. 2.1, we then train all RobArchs
using Standard-AT. All three RobArchs outperform their
XCiT [1] counterparts (Table 3). Using the same train-
ing configurations as Salman et al. [41], RobArch-S sur-
passes ResNet-50 AA accuracy by 9.18 percentage points,
and is even more robust than WideResNet50-2 with 2.6×
fewer parameters. The robustness continues to improve
when scaling up the model, and RobArch-L achieves the
new SOTA AA [8] accuracy on RobustBench. RobArch’s
performance advantage also extrapolates to the PGD attack.
Overall, the proposed RobArchs outperform both ConvNets
and Transformers with similar total parameters.

4. Related Work
A huge number of AT variants have been proposed,

e.g., TRADES [64], AWP [56], ADT [15], DART [52],
MART [53], CAS [4], Max-Margin AT [14], etc. For the ro-
bust DNN research, only a few studies explored how archi-
tectures affect robustness [13, 36, 46, 48], e.g., depths [60],
widths [55] and activation functions [9, 57]. However, the
total model capacity is unconstrained along with the archi-
tecture modifications. Besides, simply combining multiple
individual optimal architectures does not transfer to a bet-
ter model, e.g., Huang et al. [26] studied depths and widths,
and found the combination of the optimal depth and width
ratios is less robust than just using the optimal width ratio.

5. Conclusion
In this work, we present the first large-scale system-

atic study on the robustness of architecture components un-
der fixed parameter budgets. Through our investigation,
we distill 18 actionable robust network design guidelines
that empower model developers to gain deep insights. Our
RobArch models instantiate the guidelines to build a fam-
ily of top-performing models across parameter capacities
against strong adversarial attacks.
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A. Network Configurations
A.1. Overview of ResNet-style ConvNets

A standard ResNet-style ConvNet includes a stem stage,
several body stages, and a classification head, as shown in
Fig. 4. A typical body stage consists of multiple resid-
ual blocks, where each of them has a shortcut connection
that skips other layers and feeds the output of the previous
layer to the current output of the block [19]. The stem stage
proceeds the input image through a convolution layer and a
max-pooling that downsample the resolution by 4 in total.
The final classification head passes the extracted features
from body stages through an average pooling and a linear
layer that outputs the predictions. Table 4 lists ResNet-50
configurations written in notations defined in the paper.

A.2. RobArch Architecture

The RobArch follows the ResNet-style ConvNet design.
We display block designs for ResNet-50 and RobArch-S in
Fig. 5. Following the RegNet design [40], we add the SE
block after the 3 × 3 convolution layer in each block. The
SE reduction ratio is 0.25.

Stage 1

Block 1

Block 3

Block 2

Stage 2

Input (224x224x3)

7x7, 64, /2

3x3 Max-Pool, /2

Avg-Pool

Linear

Predictions

Stage 3

Stage 4

ResNet-style ConvNets

Body Stages

Stem 
Stage

Body

Stages

Classification

Head

Block 1

Block 3

Block 2

...

Figure 4. An overview of ResNet-style ConvNet design, which in-
cludes a stem stage, several body stages, and a classification head.

B. Experimental Settings
We use Fast-AT as a rapid indicator while exploring dif-

ferent architecture components and building the RobArch

Table 4. ResNet-50 configurations written in notations defined in
the paper. The left column lists architecture components, and the
right column shows notations. ResNet-50 does not have SE block,
so the configuration is “N/A”. For activation, ReLU-ReLU-ReLU
represents the three activation layers in a residual block. The same
also applies to normalization.

Notation

Depth D-3-4-6-3
Width W -256-512-1024-2048

G-1-1-1-1
BM -0.25-0.25-0.25-0.25

Stem stage Stem width 64
Stem kernel 7
Downsample factor 4

Dense connection Dense ratio 1
Kernel size Kernel size 3
Dilation Dilation 1
Activation Act. ReLU

ReLU-ReLU-ReLU
SE N/A
Normalization Norm. BN

BN-BN-BN

ResNet Block RobArch Block

1x1, 64

3x3, 64

1x1, 256

BN, ReLU

BN, ReLU

ReLu

256

BN

1x1, 288

BN

1x1, 72

3x3, 72, g = 2

1x1, 72

Scale

SiLU

BN, SiLU

SiLU

ReLU

288

Sigmoid

Global pooling

1x1, 72

Figure 5. Block designs for a ResNet and a RobArch. For simplic-
ity, “1× 1, 64” means pointwise convolution with 64-layer output
channels. “g = 2” means 2 group convolution groups, and the
default group is 1.

family. We follow the same 3-phase training as proposed in
the Fast-AT paper [54]. Fast-AT sets training ϵ = 1.25×
test ϵ and finds catastrophic overfitting happens when train-
ing ϵ goes beyond 10. Therefore, we set training ϵ ∈
{2.5, 5.0, 7.5} corresponding to test ϵ ∈ {2, 4, 6} and show
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Table 5. Determine training ϵ for Fast-AT using ResNet-50. Train-
ing ϵ = 2.5 shows the highest natural and PGD10-2 accuracies,
while training ϵ = 7.5 shows the highest PGD10-8 accuracy.
Overall, training ϵ = 5.0 is selected for all Fast-AT experiments
since it exhibits a balanced performance on all natural and attack
budgets.

Training ϵ Natural PGD10-2 PGD10-4 PGD10-8

2.5 60.04% 43.06% 25.34% 6.49%
5.0 56.09% 42.66% 30.43% 12.61%
7.5 49.80% 36.86% 26.95% 13.87%

the results in Table 5. Larger training ϵ exhibits higher ro-
bustness against strong attacks at the cost of lowering the
accuracies of natural and weak attacks. We select training
ϵ = 5.0 for its balanced performance on natural and various
attack budgets. We use Standard-AT to robustify all mem-
bers in the RobArch family, and follow the same training
configurations as Salman et al. [41].

Our RobArchs are evaluated against the two strongest
adversarial attacks, PGD [36] and AA [8]. All PGD attacks
are tested on the full ImageNet validation set. AA is an en-
semble of four different parameter-free attacks, three white-
and one black-box. We use the same 5000 ImageNet valida-
tion subset provided by the RobustBench [7] for AA com-
parison.

C. Ablations on Adversarial Training

We ablate Fast-AT and Standard-AT for two purposes:
1) verify the robustness order is consistent under two dif-
ferent AT methods, 2) compute whether the two approaches
exhibit comparable robustness increases when subjected to
the same ablation.

Since Standard-AT incurs longer training time, we ran-
domly select one small budget model S4 and show the re-
sults in Table 6. For natural, PGD10-4 and AA runs, S4

outperforms ResNet-50 but is inferior to RobArch-S, which
demonstrates the robustness order is consistent under Fast-
AT and Standard-AT. Then, we compute the robustness
gain using PGD10-4 as an example. From ResNet-50, S4 to
RobArch-S, accuracy increases by 6.18 and 3.27 percentage
points under Fast-AT, and increases by 6.01 and 2.52 per-
centage points under Standard-AT. Both training methods
show comparable robustness increases on the same archi-
tecture against the same attack. The observation also extrap-
olates to natural and AA accuracies. As expected, Standard-
AT displays higher robustness than Fast-AT. Hence, we
conclude that Fast-AT serves as a good indicator when ex-
ploring different architecture components and building the
RobArch family. Standard-AT can fully robustify all mem-
bers in the RobArch family after finalizing the architectures.

Table 6. Ablations on Fast-AT and Standard-AT. We randomly
select one small budget model S4 from the roadmap and train it
with both methods. The results show that the robustness order
is consistent under two different AT methods, and the scales of
robustness increment are also comparable.

Model
Fast-AT Standard-AT

Natural PGD10-4 Natural PGD10-4 AA

S0 (ResNet-50) 56.09% 30.43% 63.87% 39.66% 34.96%
S4 60.57% 36.61% 68.88% 45.67% 41.44%
S7 (RobArch-S) 62.27% 39.88% 70.17% 48.19% 44.14%

Table 7. Our RobArch model family outperforms SOTA archi-
tectures under the same Fast-AT training method. The results are
consistent across natural and different attack budgets. We high-
light all three RobArchs for easy comparisons.

Architecture #Param Natural PGD10-2 PGD10-4 PGD10-8

SqueezeNet 1.1 1 M 0.10 % 0.10 % 0.10 % 0.10 %
MobileNet V2 4 M 41.60% 31.23% 21.89% 8.94 %
EfficientNet-B0 5 M 48.78% 37.74% 26.90% 10.92%
ShuffleNet V2 2.0× 7 M 49.99% 0.01 % 0.01 % 0.02 %
DenseNet-121 8 M 52.29% 40.06% 28.72% 12.23%
ResNet-18 12 M 46.59% 35.05% 24.64% 9.95 %
RegNetX-3.2GF 15 M 57.26% 45.74% 33.85% 15.37%
RegNetY-3.2GF 19 M 59.15% 47.09% 34.82% 15.51%
EfficientNetV2-S 21 M 57.64% 45.89% 33.48% 14.03%
ResNeXt-50

25M 57.33% 45.46% 33.08% 14.45%
32×4d
ResNet-50 26 M 56.09% 42.66% 30.43% 12.61%
RobArch-S 26 M 62.27% 51.67% 39.88% 18.99%
Swin-T 28 M 38.83% 28.08% 18.49% 6.20 %
ConvNeXt-T 29 M 21.35% 15.39% 10.51% 4.07 %
DenseNet-161 29 M 59.80% 47.60% 35.35% 15.77%
EfficientNet-B5 30 M 55.90% 44.80% 33.26% 14.53%
RegNetY-8GF 39 M 63.61% 52.26% 40.15% 19.21%
RegNetX-8GF 40 M 60.26% 48.98% 36.89% 17.22%
ResNet-101 45 M 58.04% 45.72% 33.90% 15.93%
RobArch-M 46 M 64.40% 53.97% 42.06% 20.98%
ResNet-152 60 M 61.55% 48.50% 35.85% 15.87%
WideResNet50-2 69 M 60.66% 46.99% 34.10% 15.37%
RobArch-L 104M 66.08% 55.52% 43.81% 22.50%
WideResNet101-2127M 61.63% 49.10% 36.23% 16.14%

D. Robust Architecture Design Results
This section presents the detailed results for all architec-

ture components, using five tables. In each table, we use a
bold font to highlight the results that have been presented
in the paper, and in the caption, we describe the additional
information that we are introducing here. Table 8 is depth-
only, Table 13 is width-only, Table 14 is depth-width com-
bination, Table 9 includes all stage-level designs, and Table
10 includes all block-level designs. For each component, its
table includes architecture configurations, total parameters,
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Table 8. PGD10 robustness of depth. Bold font means the re-
sults have been presented in the paper. All configurations are
trained with Fast-AT and evaluated on full ImageNet validation
set. ResNet-50 serves as the baseline. We presented D-5-8-13-1
in the main paper, and provide results for all 3-, 4-, 5- and 6-stage
networks here.

Config #Param Natural PGD10-2 PGD10-4 PGD10-8

ResNet-50 25.56M 56.09% 42.66% 30.43% 12.61%

3-stage Network

D-16-16-16 25.02M 57.15% 41.35% 29.57% 14.37%
D-10-18-16 25.15M 56.47% 43.32% 31.52% 14.57%
D-3-22-16 25.78M 56.77% 44.99% 33.24% 15.14%
D-16-25-14 25.30M 56.69% 44.53% 32.63% 14.39%
D-2-16-18 26.26M 57.31% 44.97% 32.72% 14.00%
D-3-29-14 25.51M 57.27% 44.74% 33.02% 14.88%
D-3-4-20 25.21M 57.69% 45.27% 32.95% 14.46%
D-8-2-20 25.00M 57.12% 44.32% 31.90% 13.50%

4-stage Network

D-1-5-6-3 25.70M 55.98% 43.54% 31.46% 13.54%
D-5-2-6-3 25.14M 52.93% 40.41% 29.14% 12.60%
D-1-4-7-3 26.53M 56.60% 43.62% 31.51% 13.76%
D-6-4-4-3 23.53M 54.19% 42.11% 30.40% 13.30%
D-3-5-2-4 25.83M 53.98% 41.44% 30.08% 13.13%
D-4-3-10-2 25.35M 55.62% 43.15% 31.32% 14.03%
D-2-7-13-1 25.22M 57.19% 44.16% 31.91% 13.89%
D-2-9-13-1 25.78M 57.89% 45.08% 32.84% 14.63%
D-2-13-8-2 25.78M 55.86% 42.91% 30.96% 13.40%
D-1-1-15-1 25.71M 55.74% 43.41% 31.45% 13.51%
D-2-5-14-1 25.78M 56.49% 44.13% 32.58% 14.73%
D-5-8-13-1 25.71M 57.35% 44.83% 33.33% 15.46%
D-2-12-12-1 25.51M 55.89% 43.39% 31.45% 13.56%
D-4-8-1-4 25.62M 54.84% 42.44% 30.23% 12.86%
D-1-4-2-4 25.41M 52.46% 40.25% 28.80% 12.22%
D-2-1-3-4 25.76M 53.23% 41.50% 29.76% 12.51%
D-3-24-5-2 25.58M 57.41% 44.66% 32.65% 14.42%
D-2-8-5-3 25.49M 56.43% 43.65% 31.70% 13.62%
D-6-4-2-4 25.76M 53.48% 42.04% 31.07% 13.70%
D-10-6-5-3 25.49M 57.17% 43.65% 31.45% 13.25%
D-10-2-2-4 25.48M 53.03% 41.01% 30.32% 13.45%
D-1-2-3-4 25.97M 53.68% 41.05% 29.21% 11.92%

5-stage Network

D-1-1-3-1-2 25.42M 48.85% 36.89% 25.98% 10.37%
D-1-1-3-2-1 25.42M 50.14% 37.33% 26.11% 10.35%
D-3-6-2-2-1 25.85M 51.64% 39.12% 28.23% 12.24%
D-2-3-7-1-1 26.06M 52.16% 39.79% 28.40% 11.72%
D-3-4-6-2-1 29.76M 53.67% 41.25% 29.88% 12.65%

6-stage Network

D-1-1-1-1-1-1 27.39M 40.82% 29.46% 20.00% 7.52%

natural, PGD10-2, PGD10-4, and PGD10-8 accuracies.

Table 9. PGD10 robustness of all stage-level designs. Bold font
means the results have been presented in the paper. All configu-
rations are trained with Fast-AT and evaluated on full ImageNet
validation set. ResNet-50 serves as the baseline. We presented
“Stem width 96” and “Move down (↓) downsampling” for the stem
stage, and “Dense ratio 2” for the dense connection in the main pa-
per. We complete the results by providing all other configurations,
and PGD attack budgets here.

Config #Param Natural PGD10-2 PGD10-4 PGD10-8

ResNet-50 25.56M 56.09% 42.66% 30.43% 12.61%

Stem Stage

Stem width 32 25.54M 55.89% 41.64% 29.73% 13.25%
Stem width 96 25.57M 57.29% 44.55% 32.06% 13.74%
Stem kernel 3 25.55M 38.93% 0.46% 0.55% 0.30%
Stem kernel 5 25.55M 59.59% 0.38% 0.09% 0.04%
Stem kernel 9 25.56M 55.75% 43.00% 31.19% 13.63%
Move down (↓)

25.56M 57.08% 45.19% 33.08% 14.50%
downsampling
Downsample

25.56M 56.03% 44.48% 32.86% 14.71%
factor 2
“Patchify 4” 25.55M 55.40% 43.45% 31.68% 13.80%
“Patchify 2” 25.55M 56.38% 44.21% 31.91% 13.48%

Dense Connection

Dense ratio 2 25.56M 55.93% 42.85% 30.73% 12.67%
Dense ratio 3 25.56M 53.45% 40.70% 29.39% 12.84%
Dense ratio 4 25.56M 55.02% 42.44% 30.52% 12.98%
Dense ratio 5 25.56M 54.45% 41.96% 30.07% 12.49%
Dense ratio 5

25.56M 49.68% 37.32% 26.15% 10.28%
ReLU-ReLU-0

E. Roadmap Results
This section presents detailed results for the roadmap

we take to construct the RobArch family using Table 11.
We demonstrate each architecture component in the cumu-
lative RobArch construction process improves natural and
PGD10-4 in the main paper. In Table 11, we show that the
accuracy gain is also consistent on PGD10-2 and PGD10-8.

F. SOTA Architecture Comparisons
F.1. Fast-AT Comparisons

This section presents the detailed results of RobArch and
other SOTA architectures after Fast-AT using Table 7. With
a similar model capacity, RobArch-S outperforms ResNet-
50 and ResNeXt-50 43×4d, and RobArch-M outperforms
ResNet-101. Compared to models with larger parameters,
RobArch-S is even more robust than WideResNet101-2 de-
spite having 4.85× fewer parameters. The accuracy con-
tinues to increase while scaling up the RobArch models,
with RobArch-L achieving the highest natural and adver-
sarial accuracies.
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Table 10. PGD10 robustness of all block-level designs. Bold font
means the results have been presented in the paper. All configu-
rations are trained with Fast-AT and evaluated on full ImageNet
validation set. ResNet-50 serves as the baseline. Bold means re-
sults have already appeared in the main paper. We complete the
results by providing all other configurations and PGD attack bud-
gets here. For activation, 0-0-ReLU means only the last activation
layer is preserved in a block and the first two are discarded. The
same also applies to normalization.

Config #Param Natural PGD10-2 PGD10-4 PGD10-8

ResNet-50 25.56M 56.09% 42.66% 30.43% 12.61%

Kernel Size

Kernel size 5 45.68M 56.73% 44.55% 32.77% 14.62%
Kernel size 7 75.86M 59.70% 47.28% 34.67% 14.99%

Dilation

Dilation 2 25.56M 52.98% 40.38% 28.38% 11.79%
Dilation 3 25.56M 52.10% 39.69% 27.97% 11.05%

Activation

Act. GELU 25.56M 57.48% 45.05% 33.12% 14.80%
Act. SiLU 25.56M 58.19% 46.21% 34.07% 14.68%
Act. PReLU 25.56M 55.81% 42.52% 30.38% 12.76%
Act. PSiLU 25.56M 56.38% 44.90% 33.76% 15.40%
Act. PSSiLU 25.56M 57.43% 44.44% 32.22% 13.71%
ReLU-ReLU-0 25.56M 51.54% 38.69% 27.05% 10.94%
ReLU-0-ReLU 25.56M 53.91% 41.22% 29.62% 12.30%
0-ReLU-ReLU 25.56M 54.81% 42.10% 30.34% 12.86%
0-0-ReLU 25.56M 51.03% 39.12% 28.15% 12.09%
0-ReLU-0 25.56M 47.18% 34.85% 24.12% 9.51%
ReLU-0-0 25.56M 44.21% 32.34% 22.24% 8.77%

Squeeze and Excitation (SE)

SE (ReLU) 27.73M 57.83% 45.09% 32.64% 14.01%
SE (SiLU) 27.73M 58.49% 45.79% 33.63% 14.51%
SE (GELU) 27.73M 58.27% 45.66% 33.55% 14.56%
SE (PSiLU) 27.73M 56.98% 44.19% 32.19% 13.68%
SE (PSSiLU) 27.73M 57.55% 45.27% 33.33% 14.73%

Normalization

Norm. IN 25.51M 17.15% 12.49% 8.54% 3.55%
BN-BN-0 25.53M 54.15% 41.12% 29.59% 12.36%
BN-0-BN 25.55M 56.04% 43.29% 31.34% 13.37%
0-BN-BN 25.55M 56.18% 43.64% 31.61% 13.47%
0-0-BN 25.54M 54.47% 41.91% 30.13% 12.65%
0-BN-0 25.52M 54.55% 41.94% 30.06% 12.62%
BN-0-0 25.52M 54.44% 41.47% 29.72% 12.50%

F.2. Standard-AT Comparisons

This section compares our RobArchs with other SOTA
models against both PGD and AA in Table 12. For
AA, all three RobArchs outperform their XCiT counter-
parts. Using the same training configurations as Salman
et al. [41], RobArch-S surpasses ResNet-50 AA accuracy

by 9.18 percentage points, and is even more robust than
WideResNet50-2 with 2.6× fewer parameters. The robust-
ness continues to scale with model capacity, and RobArch-
L achieves the new SOTA AA accuracy on the Robust-
Bench leaderboard. It is important to note that ResNet-
50+DiffPure [39] designed a novel AT method via using
diffusion models [22] for adversarial purification. Although
the method improves the AA accuracy by 5.97 percent-
age points, our architecture modifications show stronger ro-
bustness even without finetuning the Standard-AT method.
We believe a carefully designed training recipe can further
improve RobArchs’ robustness. For PGD, the RobArch-
S again outperforms ResNet-50 and even WideResNet50-
2 using the same Standard-AT configurations. Overall,
our RobArchs outperform both ConvNets and Transformers
with similar total parameters.
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Table 11. The roadmap outlines the path we take to cumulatively improve the robustness and construct RobArch-S (∼26M), RobArch-M
(∼46M), and RobArch-L (∼104M) based on our guidelines. Natural and PGD10-4 accuracies were already shown in the main paper.
PGD10-2 and PGD10-8 show similar trends of accuracy improvement as PGD10-4.

Configurations #Param Natural PGD10-2 PGD10-4 PGD10-8

Small: ResNet-50 → RobArch-S (S7)

S0 ResNet-50 25.71M 56.09% 42.66% 30.43% 12.61%
S1 S0 + D-5-8-13-1 25.56M 57.35% 44.83% 33.33% 15.46%
S2a S1 + g = 2, e = 2, b = 0.25 25.84M 57.98% 46.00% 33.94% 15.27%
S2b S1 + g = 1, e = 1.5, b = 0.25 25.53M 57.52% 44.60% 32.83% 14.23%
S3 S2a + Stem width 96 + Move down (↓) downsampling 25.85M 57.82% 46.37% 34.86% 15.92%
S4 S3 + SE (ReLU) 26.15M 60.57% 49.05% 36.61% 16.43%
S5 S4 + Act. SiLU 26.15M 62.04% 51.41% 39.48% 18.95%
S6 S5 + SE (SiLU) 26.15M 60.32% 49.74% 38.24% 18.18%
S7 S5 + Norm-0-BN-BN 26.14M 62.27% 51.67% 39.88% 18.99%

Medium: RobArch-S (S7) → RobArch-M (M2)

M1 S7 + Kernel size 5 45.95M 63.82% 52.89% 41.00% 19.90%
M2 S7 + D-7-11-18-1 45.90M 64.40% 53.97% 42.06% 20.98%
M3 S7 + W -384-760-1504-2944 46.16M 63.52% 53.11% 41.43% 20.27%

Large: RobArch-M (M2) → RobArch-L (L2)

L1 M2 + Kernel size 7 103.89M 64.08% 52.92% 40.70% 19.61%
L2 M2 + W -512-1024-2016-4032 104.07M 66.08% 55.52% 43.81% 22.50%
L3 M2 + D-8-13-21-2 104.13M 64.91% 54.64% 43.09% 21.81%
L4 M2 + D-10-16-26-2 104.14M 65.28% 54.49% 42.85% 21.42%

Table 12. Our RobArch model outperforms ConvNets and Transformers with similar total parameters against ℓ∞ = 4/255 AA and
ℓ∞ = 2/255, 4/255, 8/255 PGD attacks. Using the same training configurations as Salman et al. [41], our model outperforms both
ResNet-50 and WideResNet50-2. Every RobArch model outperforms its XCiT counterpart at a similar capacity.

Architecture #Param Natural AA PGD10-4 PGD50-4 PGD100-4 PGD100-2 PGD100-8

ResNet-18 [41] 12M 52.49% 25.32% 30.06% 29.61% 29.61% 40.98% 11.57%
RobNet-large [18] 13M 61.26% - 37.16% 37.15% 37.14% - -
PoolFormer-M12 [11] 22M 66.16% 34.72% - - - - -
DeiT-S [3] 22M 66.50% 35.50% 41.03% 40.34% 40.32% - -
DeiT-S+DiffPure [39] 22M 73.63% 43.18% - - - - -
ResNet-50 [41] 26M 63.87% 34.96% 39.66% 38.98% 38.96% 52.15% 15.83%
ResNet-50+DiffPure [39] 26M 67.79% 40.93% - - - - -
ResNet50+SiLU [57] 26M 69.70% - 43.00% 41.90% - - -
ResNet50+GELU [3] 26M 67.38% 35.51% 40.98% 40.28% 40.27% - -
ResNet-50-R [26] 26M 56.63% - - 31.14% - - -
XCiT-S12 [11] 26M 72.34% 41.78% - - - - -
RobArch-S 26M 70.17% 44.14% 48.19% 47.78% 47.77% 60.06% 21.77%

XCiT-M12 [11] 46M 74.04% 45.24% - - - - -
RobArch-M 46M 71.88% 46.26% 49.84% 49.32% 49.30% 61.89% 23.01%

WideResNet50-2 [41] 69M 68.41% 38.14% 42.51% 41.33% 41.24% 55.86% 16.29%
WideResNet50-2+DiffPure [39] 69M 71.16% 44.39% - - - - -
Swin-B [38] 88M 74.36% 38.61% - - - - -
XCiT-L12 [11] 104M 73.76% 47.60% - - - - -
RobArch-L 104M 73.44% 48.94% 51.72% 51.04% 51.03% 63.49% 25.31%
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Table 13. PGD10 robustness of width. Bold font means the results have been presented in the paper. All configurations are trained with Fast-
AT and evaluated on full ImageNet validation set. ResNet-50 serves as the baseline. In the main paper, we presented BM -0.5-0.5-0.5-0.5
and BM -0.5-0.5-0.25-0.25 for bottleneck multiplier, G-2-2-2-2 for group convolution groups, W -512-768-1152-1728 for expansion
ratio, and the combined model. We complete the results by providing all other configurations, and PGD attack budgets here.

Channel Group Bottleneck Multiplier #Param Natural PGD10-2 PGD10-4 PGD10-8

ResNet-50 25.56M 56.09% 42.66% 30.43% 12.61%

Bottleneck Multiplier

W -320-672-1456-3136 G-1-1-1-1 BM -0.125-0.125-0.125-0.125 25.47M 53.47% 41.42% 30.11% 13.40%
W -128-256-568-1304 G-1-1-1-1 BM -0.5-0.5-0.5-0.5 25.57M 55.31% 42.48% 30.52% 13.23%
W -64-144-320-720 G-1-1-1-1 BM -1-1-1-1 25.61M 53.07% 40.93% 29.54% 12.70%
W -32-72-168-384 G-1-1-1-1 BM -2-2-2-2 25.72M 51.17% 38.79% 27.32% 11.22%
W -16-32-88-200 G-1-1-1-1 BM -4-4-4-4 26.19M 47.67% 35.93% 25.30% 10.32%
W -256-512-168-384 G-1-1-1-1 BM -0.25-0.25-2-2 26.42M 52.33% 39.79% 28.52% 12.30%
W -24-48-1024-2048 G-1-1-1-1 BM -4-4-0.25-0.25 25.20M 55.78% 43.09% 30.79% 12.89%
W -128-256-1024-2048 G-1-1-1-1 BM -0.5-0.5-0.25-0.25 24.83M 56.11% 43.38% 31.26% 13.47%

Group Convolution Groups

W -256-512-1080-2504 G-2-2-2-2 BM -0.25-0.25-0.25-0.25 26.02M 57.31% 44.25% 32.09% 13.91%
W -288-576-1248-2592 G-4-4-4-4 BM -0.25-0.25-0.25-0.25 25.58M 56.28% 44.00% 31.52% 13.33%
W -256-512-1280-2816 G-8-8-8-8 BM -0.25-0.25-0.25-0.25 25.81M 56.54% 42.49% 30.07% 12.86%
W -256-576-1344-2816 G-16-16-16-16 BM -0.25-0.25-0.25-0.25 25.61M 54.83% 42.92% 31.03% 13.28%
W -304-640-1384-2848 G-76-160-337-712 BM -0.25-0.25-0.25-0.25 25.52M 55.17% 42.34% 30.45% 12.72%
W -256-512-1040-2112 G-8-8-1-1 BM -0.25-0.25-0.25-0.25 26.13M 55.49% 42.42% 30.78% 12.82%
W -256-512-1248-2784 G-1-1-8-8 BM -0.25-0.25-0.25-0.25 25.69M 55.94% 43.28% 31.15% 13.92%
W -256-512-1248-2592 G-2-2-4-4 BM -0.25-0.25-0.25-0.25 25.41M 57.13% 43.88% 31.44% 13.48%

Channel / Expansion Ratio

W -1112-1112-1112-1112 G-1-1-1-1 BM -0.25-0.25-0.25-0.25 25.70M 56.77% 43.18% 31.08% 13.68%
W -512-768-1152-1728 G-1-1-1-1 BM -0.25-0.25-0.25-0.25 25.95M 57.17% 44.05% 32.04% 14.06%
W -144-360-904-2264 G-1-1-1-1 BM -0.25-0.25-0.25-0.25 26.01M 53.89% 41.83% 30.33% 13.38%
W -88-264-792-2376 G-1-1-1-1 BM -0.25-0.25-0.25-0.25 25.81M 52.39% 40.60% 29.36% 12.58%

Combined

W -512-768-1152-1728 G-2-2-2-2 BM -0.5-0.5-0.25-0.25 24.43M 56.64% 43.56% 31.04% 13.17%

Table 14. PGD10 robustness of combining depth and width. We use a bold font to highlight results that have been presented in the paper.
Specifically, the paper uses a scatter plot to visualize how the PGD10-4 accuracy changes as we vary depth and width. Here, we additionally
show the results for PGD10-2 and PGD10-8. All configurations are trained with Fast-AT and evaluated on full ImageNet validation set.

Depth Width #Param Natural PGD10-2 PGD10-4 PGD10-8

D-1-2-4-1 W -768-1152-1712-2560 25.69M 54.28% 41.16% 29.10% 11.83%
D-2-4-7-1 W -648-968-1456-2160 25.55M 57.25% 43.60% 31.52% 13.59%
D-4-6-10-1 W -576-848-1280-1904 25.51M 57.08% 44.18% 32.32% 14.46%
D-5-8-13-1 W -512-768-1152-1728 25.18M 57.24% 44.69% 33.05% 15.36%
D-8-12-20-2 W -424-632-944-1416 25.37M 57.74% 44.79% 33.15% 14.87%
D-10-16-26-2 W -376-568-856-1280 25.56M 61.36% 44.92% 27.23% 5.67%
D-20-32-52-4 W -272-416-616-928 25.52M 55.76% 43.28% 31.31% 13.03%
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